

Embedded Real-Time Systems (AME 3623)

Homework 3 Solutions

February 24, 2006

Question 1

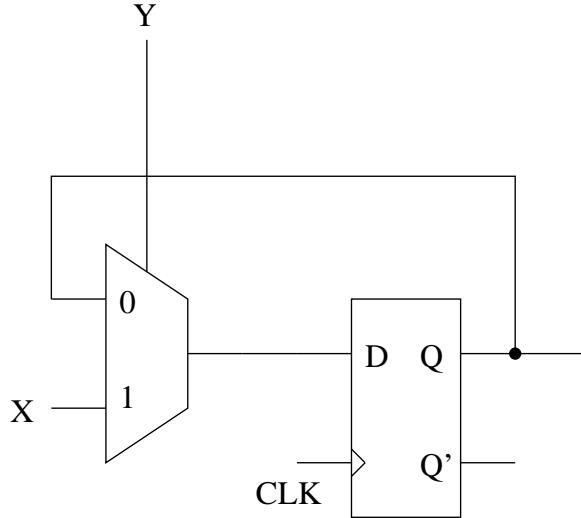
1. (5pts) Given the binary number: 1001011. What is the decimal equivalent? Show your work.

$$64 + 8 + 2 + 1 = 75$$

2. (5pts) Given the binary number: 111010. What is the decimal equivalent? Show your work.

$$32 + 16 + 8 + 2 = 58$$

3. (5pts) Given the decimal number: 68. What is the binary equivalent? Show your work (all of the steps of the algorithm that we discussed in class).


value	binary	i	2^i
68	0000000		
		6	64
4	1000000		
		2	4
0	1000100		

4. (5pts) Given the decimal number: 122. What is the binary equivalent?
Show your work.

value	binary	<i>i</i>	2^i
122	0000000		
		6	64
58	1000000		
		5	32
26	1100000		
		4	16
10	1110000		
		3	8
2	1111000		
		1	2
0	1111010		

Question 2

Given the following circuit:

(15pts) Explain in detail what this circuit does in terms of its inputs (X , Y , and CLK). (Multiplexer notation note: the 0 and 1 tell you which input is selected when Y is in these states)

When $Y = 0$, the flip-flop will maintain its current state (even as the clock cycles).

When $Y = 1$, the flip-flop stores the value of X when the clock transitions from high to low.

(Note: this is going to become a critical component in the design of our RAM)

Question 3

Following the steps below (and our design procedure from class), design a counter that counts down from 7 to 2. After 2, the counter returns to 7.

1. (10pts) Show the truth table

Our general approach will be to use D flip-flops with a common clock signal driving each one. So – we are looking to design a combinatorial circuit that will transform the set of Q_i 's (representing the current state) into a representation of the next state (the D_i 's). In addition, since the 000 and 001 cases never occur, we can treat these as “don’t care” conditions.

Q2	Q1	Q0	D2	D1	D0
0	0	0	x	x	x
0	0	1	x	x	x
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	1	1	0

2. (15pts) Show the Karnaugh map for the first bit, the clusters, and the resulting algebraic expression.

$D0$

		Q2			
		Q1		Q0	
		Q2	Q1	Q0	Q0
		00	01	11	10
	0	x	1	1	1
	1	x	0	0	0

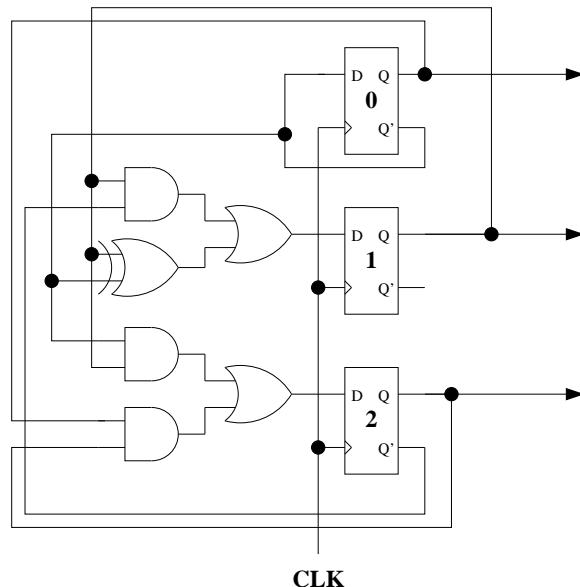
$$D0 = \overline{Q0}$$

3. (15pts) Show the Karnaugh map for the second bit, the clusters, and the resulting algebraic expression.

$D1$

		Q2			
		Q1		Q0	
		Q2	Q1	Q0	Q0
		00	01	11	10
	0	x	1	0	1
	1	x	1	1	0

$$D1 = \overline{Q0} \overline{Q1} + Q0Q1 + Q1\overline{Q2} = \overline{Q0} \oplus \overline{Q1} + Q1\overline{Q2} = \overline{Q0} \oplus Q1 + Q1\overline{Q2}$$


4. (15pts) Show the Karnaugh map for the third bit, the clusters, and the resulting algebraic expression.

$D2$

		Q2Q1		Q2	
		00	01	11	10
Q0	0	x	1	1	0
	1	x	0	1	1

$$D2 = \overline{Q0} Q1 + Q0Q2$$

5. (15pts) Show the full circuit

Question 4

How much time did you spend on this assignment?