Embedded Real-Time Systems (AME 3623)
Homework 6 Solutions

May 2, 2006

Question 1

Consider the following circuit in which three digital outputs (C0, C1, C2)
drive an analog circuit. For bit values 0 and 1, each pin will be driven at 0V
and 45V, respectively.

4R
CO| ——MWW——

Cl| —ww + Vout

C2| ———WwWW——

(20pts) Starting from Kirkoff’s law, derive an equation for Vout in terms
of the three digital signals.

By Kirkoff’s (current) law, we know that the sum of the three currents
must be zero (note that we assume that no current is moving to the right
hand side of the figure from the node):

Zi]i =0
By Ohm’s law, we have:

g =0
The volt&ge at pin v is 5C;. So:

i 75@}_3.%“ =0
Reorgamzihg, we have:

5 C’L — Vout 1

B = T8y o
Therefore:

Vout = ? (Co/4+ C1/2+ Cy)
or:

Vour = 2 (Co + 2C1 + 4Cy)

(10pts) For each possible combination of boolean values for the Ci’s, give
the actual value of Vout.

Cy C1 Gy Vout
0 0 0 0
0 0 1] 5/7=07143
0 1 0]10/7=1.4286
0 1 1]15/7=21429
10 0]20/7=28571
10 1]25/7=35714
11 0 |30/7=42857
11 1] 35/7=50

Question 2
(10pts) Give two disadvantages for performing I1/O through polling.

1. Processor time can be wasted while the processor waits for signal lines
to change state.

2. Polling must be done at a high enough frequency (or else events might
be missed). This can be a problem if the processor is also trying to
accomplish another (possibly unrelated) task.

(10pts) Explain (in brief) how the use of interrupts solves these two problems.
These answers parallel the ones from above.

1. When using an interrupt to handle an event, there is no need for the
processor to spend time repeatedly checking the signal lines (since an
interrupt is only raised when things have changed).

2. The use of an interrupt (in most cases) enables the processor to respond
almost immediately to an event.

(10pts) List two necessary conditions for there to be a shared data problem.

1. A data structure is accessed both by the main program and by an in-
terrupt routine (more generally: a data structure is accessed by two or
more processes).

2. The interrupt routine can be executed while the main program is in
the middle of an access to the shared data structure (more generally:
the processes accessing the shared data structure can execute asyn-
chronously).

(15pts) Suppose we want a small segment of code — called donow() — to be
executed precisely once every 5.12ms. What is the timer(prescalar configu-
ration and the (psuedo)code for the interrupt routine?

We will use a prescalar of 64. This gets us down to an interrupt every
1.024 ms. We then need an interrupt routine with an additional counter
that expires at 5. So, we are left with an interrupt interval of: 5 % 256 %
64/16000000 = 5.12ms.

SIGNAL (SIG.OVERFLOWO) {
4+4counter;
if (counter == 5) {
donow () ;
counter = 0;
b

¥
Somewhere in the main program:

// Initialize counter

counter = 0;

// Interrupt occurs every (64x256)/16000000 = 1.024 ms
timer0_config (TIMERO_PRE 64);

// Enable the timer interrupt

timer0O_enable ();

// Enable global interrupts

sei();

Question 3

Consider a hybrid priority and round-robin scheduler that is non-preemptive.
Consider also three regularly-scheduled processes:

Task 1 executes at 2Hz/priority 2 and requires 50ms of processing time (it
moves from the waiting to the ready state at t = 0, .5s, 1s, 1.5s, etc.).

Task 2 executes at 4H z /priority 2 and requires 100ms of processing time (and
moves from waiting to ready at ¢t = 0.01,.251s, .501s, .751s, 1.01s, etc.).

Task 3 executes at 1Hz/priority 1 and requires 300ms of processing (and
moves from waiting to ready at ¢t = 0, 1s, 2s, etc.).

Assume that priority 2 is the highest priority (this is not the case for all
OS’s).

(20pts) At 50ms intervals, show which process is occupying the processor

at any given time for the interval ¢ = [0s, 1.5s].
Ezecution Ready (left is top of queue)

Time

Notes

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500

Tla
T2a
T2a
T3a
T3a
T3a
T3a
T3a
T3a
T2b
T2b
T1b
T2c
T2c
T2d
T2d

Tic
T2e
T2e
T3b
T3b
T3b
T3b
T3b
T3b
T2f
T2f

T2a, T3a
T3a
T3a

T2e, T3b
T3b
T3b

T2f
T2f
Tof
Tof

Tid, T2q

Time interval: 0 to 50

T2b misses deadline!

T2d actually doesn’t start execution
until 751; and it completes at 851

T2f misses deadline!

