
Embedded Real-Time Systems (AME 3623)
Homework 6 Solutions

May 2, 2006

1

Question 1

Consider the following circuit in which three digital outputs (C0, C1, C2)
drive an analog circuit. For bit values 0 and 1, each pin will be driven at 0V
and +5V , respectively.

R

2R

4R
C0

C2

C1 Vout

(20pts) Starting from Kirkoff’s law, derive an equation for V out in terms
of the three digital signals.

By Kirkoff’s (current) law, we know that the sum of the three currents
must be zero (note that we assume that no current is moving to the right
hand side of the figure from the node):

∑
i Ii = 0

By Ohm’s law, we have:
∑

i

∆Vi

Ri

= 0
The voltage at pin i is 5Ci. So:

∑
i

5Ci−Vout

Ri

= 0
Reorganizing, we have:

5

R

∑
i

Ci

22−i = Vout

R

∑
i

1

22−i

Therefore:
Vout = 20

7
(C0/4 + C1/2 + C2)

or:
Vout = 5

7
(C0 + 2C1 + 4C2)

2

(10pts) For each possible combination of boolean values for the Ci’s, give
the actual value of V out.

C2 C1 C0 Vout

0 0 0 0
0 0 1 5/7 = 0.7143
0 1 0 10/7 = 1.4286
0 1 1 15/7 = 2.1429
1 0 0 20/7 = 2.8571
1 0 1 25/7 = 3.5714
1 1 0 30/7 = 4.2857
1 1 1 35/7 = 5.0

Question 2

(10pts) Give two disadvantages for performing I/O through polling.

1. Processor time can be wasted while the processor waits for signal lines
to change state.

2. Polling must be done at a high enough frequency (or else events might
be missed). This can be a problem if the processor is also trying to
accomplish another (possibly unrelated) task.

(10pts) Explain (in brief) how the use of interrupts solves these two problems.
These answers parallel the ones from above.

1. When using an interrupt to handle an event, there is no need for the
processor to spend time repeatedly checking the signal lines (since an
interrupt is only raised when things have changed).

2. The use of an interrupt (in most cases) enables the processor to respond
almost immediately to an event.

(10pts) List two necessary conditions for there to be a shared data problem.

1. A data structure is accessed both by the main program and by an in-
terrupt routine (more generally: a data structure is accessed by two or
more processes).

3

2. The interrupt routine can be executed while the main program is in
the middle of an access to the shared data structure (more generally:
the processes accessing the shared data structure can execute asyn-
chronously).

(15pts) Suppose we want a small segment of code – called donow() – to be
executed precisely once every 5.12ms. What is the timer0 prescalar configu-
ration and the (psuedo)code for the interrupt routine?

We will use a prescalar of 64. This gets us down to an interrupt every
1.024 ms. We then need an interrupt routine with an additional counter
that expires at 5. So, we are left with an interrupt interval of: 5 ∗ 256 ∗
64/16000000 = 5.12ms.

SIGNAL(SIG OVERFLOW0) {
++counter ;
i f (counter == 5) {
donow () ;
counter = 0 ;

} ;
} ;

Somewhere in the main program :

// I n i t i a l i z e counter
counter = 0 ;
// In t e r rup t occurs every (64∗256)/16000000 = 1.024 ms
t ime r 0 c on f i g (TIMER0 PRE 64) ;
// Enable the t imer i n t e r r u p t
t imer0 enab l e () ;
// Enable g l o b a l i n t e r r u p t s
s e i () ;

4

Question 3

Consider a hybrid priority and round-robin scheduler that is non-preemptive.
Consider also three regularly-scheduled processes:

Task 1 executes at 2Hz/priority 2 and requires 50ms of processing time (it
moves from the waiting to the ready state at t = 0, .5s, 1s, 1.5s, etc.).

Task 2 executes at 4Hz/priority 2 and requires 100ms of processing time (and
moves from waiting to ready at t = 0.01, .251s, .501s, .751s, 1.01s, etc.).

Task 3 executes at 1Hz/priority 1 and requires 300ms of processing (and
moves from waiting to ready at t = 0, 1s, 2s, etc.).

Assume that priority 2 is the highest priority (this is not the case for all
OS’s).

5

(20pts) At 50ms intervals, show which process is occupying the processor
at any given time for the interval t = [0s, 1.5s].

Time Execution Ready (left is top of queue) Notes
0 T1a T2a, T3a Time interval: 0 to 50
50 T2a T3a
100 T2a T3a
150 T3a -
200 T3a -
250 T3a T2b
300 T3a T2b
350 T3a T2b
400 T3a T2b
450 T2b -
500 T2b T1b, T2c T2b misses deadline!
550 T1b T2c
600 T2c -
650 T2c -
700 - -
750 T2d - T2d actually doesn’t start execution
800 T2d - until 751; and it completes at 851
850 - -
900
950
1000 T1c T2e, T3b
1050 T2e T3b
1100 T2e T3b
1150 T3b -
1200 T3b -
1250 T3b T2f
1300 T3b T2f
1350 T3b T2f
1400 T3b T2f
1450 T2f
1500 T2f T1d, T2g T2f misses deadline!

6

