
Last Time

• Finite state machine implementation in
code

• Connecting code to the computer
architecture
– Program counter
– Status register
– General registers
– Assembly language

Today

• Another FSM example
• Analog input/output

Administrivia

• Homework 5 out by tonight
• Project 2 due Thursday

– Your FSMs should be designed (and
implemented)

• AME Faculty candidate talk today:
Dr. Brian Argrow
Small UAVs for Ad-Hoc Networking
3:00, FH 214

FSM Toy Example

• What is the FSM?

A Comment About FSM
Implementation in Code

• switch() statements are convenient for
selecting between different pieces of code
based on state

• But: may not be easy to use when
processing events

Event Handling for the
Vending Machine

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

Use of switch is simple in this case: a small number of events that
can all occur in each state

Event Handling in More
Complicated Domains

case STATE_FORWARD_SEARCH_LEFT:
// Moving forward while searching left
if(sensor[TURRET_LEFT] > 0 || sensor[TURRET_RIGHT > 0)) {

// Event: we have found a beacon on the left
turn_left();
state = STATE_FORWARD_SEARCH_RIGHT;

}else{
// No event: handle actions taken while in this state
drive_toward_beacon_front();

};
break; // DON’T FORGET THE “BREAK”

case FOO:
:
:
:

The “if” statement allows us to capture many different situations (or
events) in one

Digital to Analog and Back

• Analog: encoding information using
voltage
– Many sensors use voltage as an output
– Motors torque is determined by current

passing through the motor

• Digital: encoding information with bits

How to move between these?

Digital to Analog Conversion:
Pulse Width Modulation

What does this circuit do?

Digital to Analog Conversion:
Pulse Width Modulation

• Processor digital pin: generate PWM
signal

• RC circuit “smooths” this PWM signal out
• Pulse width determines smoothed voltage

D2A: Pulse Width Modulation

• Easy to implement
• But:

– Smoothed signal may not be smoothed
enough

– Filter induces a delay

Digital to Analog Conversion:
Resistive Network

• Sometimes need faster response

• Solution: use multiple digital pins

Analog to Digital Conversion

• For a given voltage, what is the digital
representation of the voltage?

• Common approach: successive
approximation
– Use a D2A converter to produce a voltage V
– Compare this with the input voltage Vi
– If different, then increase/decrease V
– Repeat (stopping when V is close to Vi)

Last Time

• Relationship between analog and digital
encoding of information

• D2A:
– With pulse-width modulation
– With resistive network

• A2D:
– Successive approximation

Today

• Analog to digital with the Mega8
• Project 3: following air currents
• Interrupts

Administrivia

• Project 2 due today @5:00
– Demonstration
– Group report (pdf or postscript)
– Personal report (raw text only!)

• Homework 5 is available on the web site
– Due Tuesday

Robot Administrivia

• 3 functional robots right now
• A 4th will be ready early today
• The 5th won’t be ready until sometime

Friday

A2D in the Mega8

• The mega8 contains
hardware that
implements successive
approximation

• 5 mega8 pins can be
configured as analog
input pins

A2D in the Mega8

AVCC: connect to +5V

AREF: (optional) connect
to +5V

• Measuring voltages
between 0 and +5V

Connect input analog
signal to the appropriate
ADC pin

A Code Example
// Initialize adc

adc_set_reference(ADC_REF_AREF); // Use the AREF reference pin

adc_set_adlar(0); // For our purposes, always use 0

adc_set_prescalar(ADC_PRESCALAR_128); // Necessary with 16MHz clock

// and 10 bit resolution

// Turn on ADC Converter

adc_set_enable(ADC_ENABLE);

:

:

long val;

// Can do the following an arbitrary number of times

adc_set_channel(ADC_CHANNEL_0); // ADC0

// Actually start a conversion

adc_start_conversion();

<Could go off and do something else for a while>

val = adc_read(); // Read the analog value

Analog Conversion Notes

• All functions are provided in oulib.c
• See oulib.h for the definition of constants

• Can get to the example code from the
Atmel HowTo
www.cs.ou.edu/~fagg/classes/general/atmel

Analog Conversion Notes

• Setting the maximum voltage:

adc_set_reference(ADC_REF_AREF); // Use the AREF reference pin

• Can also used a fixed voltage (+2.56V):

adc_set_reference(ADC_REF_2p56V);

Analog Conversion Notes

• Determining how fast the conversion
requires:

adc_set_prescalar(ADC_PRESCALAR_128); // Necessary with 16MHz clock

// and 10 bit resolution

• Conversion requires:
128 * 15 / 16000000 seconds
– Can convert faster, but may not get the full 10-

bit resolution

Analog Conversion Notes

• Reading out the value:

val = adc_read(); // Read the analog value

• Will receive a value between 0 and 0x3FF
(1023)

Project 3

• Problem: follow the air currents
• Task:

– Orient robot to face wind
– Drive toward it
– Stop when a beacon is observed on the left

Project 3

Sensing relative wind direction:
• Weather vane mounted on an encoder
• Encoder essentially tells us how

orientation is changing – so we must
integrate this signal to estimate position

Using the Lego Encoder

“Two-wire” interface
• One wire connected to ground, the

other to an I/O pin
• Must first charge the sensor’s power

source (a capacitor):
– Drive the pin high for ~3 ms

• Then read the sensor’s state
– “float” the pin
– Read out the voltage

Using the Lego Encoder
The sensed voltage will be one of four

values:
• 2.6V, 1.7V, 3.9V, and 4.5V
• We will refer to these as integer values 0,

1, 2, and 3, respectively

• As the shaft is rotated, the sensed voltage
will change from one level to the next (in
the given sequence)

• Rotation in the opposite direction yields
the opposite order

Using the Lego Encoder

• … this give us a 2-bit counter (of sorts)
• But – for one complete rotation of the

shaft, we will pass through this sequence
a total of 4 times

How do we turn this information into
absolute position?

Lego Encoder Caveats

• It is easy to miss the 4.5V level (due to
sensor design)

• For the intermediate voltages (2.6V and
3.9V), a single analog sample cannot tell
the difference between a stable voltage or
a transient one

Project 3 Group Time
What is the FSM for the sensor processing of

project 3?
• What are the states?
• For each state, what are the relevant

events?
• What actions are taken for the events?
• Think carefully about how to handle the

caveats
Once you have absolute position of the shaft,

what is the code that turns this into steering
commands? (give the pseudo-code)

Next Time

Project 3:
• Interrupt processing

