Last Time

 Finite state machine implementation in
code

« Connecting code to the computer
architecture
— Program counter
— Status register
— General registers
— Assembly language

Today

* Another FSM example
* Analog input/output

Administrivia

 Homework 5 out by tonight

* Project 2 due Thursday

— Your FSMs should be designed (and
implemented)

 AME Faculty candidate talk today:
Dr. Brian Argrow
Small UAVs for Ad-Hoc Networking
3:00, FH 214

FSM Toy Example

« What is the FSM?

A Comment About FSM
Implementation in Code
» switch() statements are convenient for

selecting between different pieces of code
based on state

« But: may not be easy to use when
processing events

Event Handling for the
Vending Machine

case STATE_10cents:
// $.10 has already been deposited
switch (event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;
case EVENT_ DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;
case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater
display NOT_ ENOUGH () ;
break;
case EVENT NONE: // No event
break; // Do nothing
i
break;

Use of switch is simple in this case: a small number of events that
can all occur in each state

Event Handling in More
Complicated Domains

case STATE_FORWARD_SEARCH_LEFT:

// Moving forward while searching left

if (sensor [TURRET_LEFT] > 0 || sensor [TURRET_RIGHT > 0)) {
// Event: we have found a beacon on the left
turn_left ();
state = STATE_FORWARD_SEARCH_RIGHT;

}else/{
// No event: handle actions taken while in this state
drive_toward beacon_front () ;

}i

break; // DON’T FORGET THE “BREAK”

case FOO:

The “if” statement allows us to capture many different situations (or
events) in one

Digital to Analog and Back

* Analog: encoding information using
voltage

— Many sensors use voltage as an output

— Motors torque is determined by current
passing through the motor

 Digital: encoding information with bits

How to move between these?

Digital to Analog Conversion:
Pulse Width Modulation

PWM in

What does this circuit do?

—

>
analog out

Digital to Analog Conversion:
Pulse Width Modulation

W —mre >
analog out

PWM in

;77

* Processor digital pin: generate PWM
signal

* RC circuit “smooths” this PWM signal out
* Pulse width determines smoothed voltage

D2A: Pulse Width Modulation

PWM in W= >
1 analog out
« Easy to implement
« But:
— Smoothed signal may not be smoothed
enough

— Filter induces a delay

Digital to Analog Conversion:
Resistive Network

» Sometimes need faster response

» Solution: use multiple digital pins

Analog to Digital Conversion

» For a given voltage, what is the digital
representation of the voltage?

« Common approach: successive
approximation
— Use a D2A converter to produce a voltage V
— Compare this with the input voltage Vi
— If different, then increase/decrease V
— Repeat (stopping when V is close to Vi)

Last Time

» Relationship between analog and digital
encoding of information

e D2A:
— With pulse-width modulation
— With resistive network

« A2D:
— Successive approximation

Today

* Analog to digital with the Mega8
* Project 3: following air currents
* Interrupts

Administrivia

* Project 2 due today @5:00
— Demonstration
— Group report (pdf or postscript)
— Personal report (raw text only!)
« Homework 5 is available on the web site
— Due Tuesday

Robot Administrivia

« 3 functional robots right now
« A 4™ will be ready early today

« The 5" won’t be ready until sometime
Friday

A2D In the Mega8

PDIP
* The mega8 contains -
(RESET) PC6 [1 28 |1 PC5 (ADC5/SCL)
hardware that ol st I i s
: : (TXD) PD1 [3 26 1 PC3 (ADC3)
Implements successive INTO) PD2 [l 2 | P02 (AR
- - (INT1) PD3 5 24 1 PC1 (ADCY)
approxim ation (XCK/T0) PD4] 6 23 |1 PCO (ADCO)
. vee o7 22 [1GND
e 5 mega8 pPINS Can be GND 8 21 AREF
. (XTAL1/TOSC1) PB6 [] 9 20 [AvCe
CO nflg ured as analog (XTAL2TOSC2) PB7 [] 10 19 1 PB5 (SCK)
: . (T1) PD5] 11 18 1 PB4 (MISO)
Input pPINS (AINO) PD6 [12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [13 16 1 PB2 (SS/0C1B)
(ICP1) PBO] 14 15 1 PB1 (OC1A)

A2D In the Mega8

AVCC: connect to +5V

AREF: (optional) connect
to +5V

* Measuring voltages
between 0 and +5V

Connect input analog
signal to the appropriate
ADC pin

PDIP

o ~N O Ok WM =

(XTAL1/TOSC1) PB6 [
(XTAL2/TOSCZ PB7 [

(AIN1) PD7 [
(ICP1) PBO [

o/

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1 PC5
M PC4
1 PC3
1 PC2
1 PCH

1 PCO
1GND
] AREF

1 AVCC

1 PB5 (SCK)

1 PB4 (MISO)

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC?2)
ADC1)
ADCO)

— e — — — —

(

1PB3 (MOSI/OC2)
1 PB2 (SS/OC1B)
1PB1 (OC1A)

A Code Example

// Initialize adc
adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin
adc_set_adlar (0); // For our purposes, always use 0
adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock

// and 10 bit resolution
// Turn on ADC Converter
adc_set_enable (ADC_ENABLE) ;

long wval;

// Can do the following an arbitrary number of times
adc_set_channel (ADC_CHANNEL_O) ; // ADCO

// Actually start a conversion
adc_start_conversion () ;

<Could go off and do something else for a while>

val = adc_read(); // Read the analog value

Analog Conversion Notes

* All functions are provided in oulib.c
 See oulib.h for the definition of constants

« Can get to the example code from the
Atmel HowTo

www.cs.ou.edu/~fagg/classes/general/atmel

Analog Conversion Notes

« Setting the maximum voltage:

adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin

« Can also used a fixed voltage (+2.56V):

adc_set_reference (ADC_REF_2p56V) ;

Analog Conversion Notes

» Determining how fast the conversion
requires:

adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock
// and 10 bit resolution

» Conversion requires:

128 * 15/ 16000000 seconds

— Can convert faster, but may not get the full 10-
bit resolution

Analog Conversion Notes
* Reading out the value:

val = adc_read(); // Read the analog value

 Will receive a value between 0 and Ox3FF
(1023)

Project 3

 Problem: follow the air currents

» Task:
— Orient robot to face wind
— Drive toward it
— Stop when a beacon is observed on the left

Project 3

Sensing relative wind direction:
« Weather vane mounted on an encoder

* Encoder essentially tells us how
orientation Iis changing — so we must
iIntegrate this signal to estimate position

Using the Lego Encoder

“Two-wire” interface

* One wire connected to ground, the
other to an 1/O pin

» Must first charge the sensor’s power
source (a capacitor):
— Drive the pin high for ~3 ms
 Then read the sensor’s state
— “float” the pin
— Read out the voltage

Using the Lego Encoder

The sensed voltage will be one of four
values:

« 2.6V, 1.7V, 3.9V, and 4.5V

* We will refer to these as integer values 0,
1, 2, and 3, respectively

* As the shaft is rotated, the sensed voltage
will change from one level to the next (in
the given sequence)

 Rotation in the opposite direction yields
the opposite order

Using the Lego Encoder

* ... this give us a 2-bit counter (of sorts)

» But — for one complete rotation of the
shaft, we will pass through this sequence
a total of 4 times

How do we turn this information into
absolute position?

Lego Encoder Caveats

* |t is easy to miss the 4.5V level (due to
sensor design)

* For the intermediate voltages (2.6V and
3.9V), a single analog sample cannot tell
the difference between a stable voltage or
a transient one

Project 3 Group Time

What is the FSM for the sensor processing of
project 37
« What are the states?

 For each state, what are the relevant
events”?

 What actions are taken for the events?

 Think carefully about how to handle the
caveats

Once you have absolute position of the shatft,
what is the code that turns this into steering
commands? (give the pseudo-code)

Next Time

Project 3:
* Interrupt processing

