
Last Time

• Timers and interrupts
• Pulse width modulation
• DC motor control and H-bridges

Today

• Device-to-device communication: buses
• Project 4

Administrivia

• Project 3 due today
– Demonstration
– Group report
– Personal report

• Reading:
– Today: ESA 7
– Thursday: ESA 9-9.2.1

RC Heli Example

RC Heli Example II

Device-to-Device Communication
Device communication occurs at multiple

levels:
• Within the processor:

– CPU to memory
– CPU to serial I/O device

• Processor to processor:
– Each sensor could have its own processor
– Some process must then coordinate sensor

data from various sources to make control
decisions

Device-to-Device Communication

It is common for this communication to take
place on a bus:

• Often consists of multiple (parallel) wires
• Allows various devices to drive the bus

(but at different times)
• Allows for a certain degree of flexibility:

devices can be added or removed at boot
time or (in some case) real time

Buses

System buses
• Data bus
• Address bus: transmission of element

address information (e.g., a memory
address)

• High-speed and local to CPU

Buses

Examples: backplane
Connect CPU with memory and I/O control
devices (video, audio, disks, etc.)

• PCI: (what you have in your PCs)
• ISA: the old PC standard
• VME: a competing standard (industrial

control)

• Local to computer

Buses

Examples: I/O
Connect computer with external devices

• Universal Serial Bus (USB)
• Firewire
• I2C
• SPI
• CAN

• External to computer

Bus Control

Critical bus issues
• Who is in control?

– Solved with some form of bus arbitration
mechanism

• How is timing determined?
– Typically make use of a clock

Bus Arbitration

• Master device: can initiate a transfer of
data over the bus

• Slave device: must wait for transfer to be
initiated

• When there are multiple masters: must
have some way to determine which one is
in control now

Bus Arbitration

• Central control: a single device decides
• Serial control:

– Control is given to one master
– If it does not need it, control is passed to the

next master
• Self-selection: the masters decide for

themselves

• Preemption: interrupting one master to
allow another to take control

Bus Use

Once arbitration is complete, we have:
• One device that will write to the bus
• One device that will read from it
• (in some cases, one device will both read

and write during a data exchange)

• Clock signal tells the reader when data
from the writer is valid

Bus Use

Protocol: rules for how data will be
exchanged

• How is the slave specified? (addressed)
• What do each of the bytes mean?
• When will they be transmitted?
• How does the writer know when the reader

has received the data?

Inter IC (I2C) Bus

• Allows for multiple masters
– Arbitration: self selection

• Two wires only!
– Data transfer: SDA
– Clock: SCL (up to 400 kbs)
– (and a common ground)

• Slave addresses are transmitted on SDA
before other data is sent

I2C Bus

• The writer of a line may pull the line low
(otherwise, it leaves the line floating)

• Master always runs the clock

I2C Bus: Start Condition

• Master starts the transmission by bringing
SDA low and then SCL low

• Constantly checks the state of SCL to
make sure that another has not brought it
down
– Aborts transmission if another master has

started a transmission

I2C Bus: Transmission of a Byte

• Master generates SCL
• Either master or slave produces the data

(depending on the situation)
• ACK: acknowledgement bit

I2C Bus: End Condition

• Master allows SCL to go high, and then
SDA (order is important)

• After this operation, any other master can
take control of the bus

I2C: Transmission of a Packet
Data packet:
• A collection of bytes
• Each byte has a specific meaning (defined

by some higher-level protocol)

• With I2C, the first byte of a packet
contains address information (7 most
significant bits)

• The 8th bit (least signficiant) determines
whether this is a read or a write operation

I2C: Master Writes to a Slave
• Start condition
• Byte 1: Address with (LSB=0: indicates

write)
– Slave acknowledges byte (ACK bit = 0)

• Byte 2: First data byte
– Slave acknowledges byte (ACK bit = 0)
:

• Byte N+1: Nth byte; ACK=0
• Stop condition

I2C: Master Reads from a Slave

• Start condition
• Byte 1: Address with (LSB=1: indicates

read)
– Slave acknowledges byte (ACK bit = 0)

• Byte 2: First data byte from slave
– Master acknowledges byte (ACK bit = 0)
:

• Byte N+1: Nth byte; ACK bit =1 (last byte)
• Stop condition

I2C Devices

• Can have a large number of I2C devices
on the same bus
– Restrictions as to bus size

• EEPROM
• Digital potentiometers
• Thermal sensors
• Compasses
• A2D/D2A devices

I2C on the Atmels

• Hardware support on the chip
• Can be configured as either a master or a

slave

• No OUlib support yet…

Project 4

Want: FSMs with wind direction sensor

Reality: only 2 functional encoders left

Solution: groups may attempt one of two
projects (which one is up to you

• Project 4a: FSMs and wind direction
• Project 4b: FSMs only

Project 4a: Robot Task

• Initial condition: robot can see beacon to
the front

• Move forward until a beacon is on the left
OR right

• If right: move downwind until beacon is
observed on left

• Move upwind until beacon is observed on
right

Project 4b: Robot Task

• Initial condition: robot can see beacon to
the front

• Move forward until a beacon is on the left
OR right

• If right: continue moving forward until a
new beacon is observed on the right

• Orient and move toward this beacon

Group Goals for Today

• Which project will you choose?
• What does the FSM look like?

Next Time

• Operating Systems

