Last Time

* Timers and interrupts
» Pulse width modulation
» DC motor control and H-bridges

Today

 Device-to-device communication: buses
* Project 4

Administrivia

* Project 3 due today
— Demonstration
— Group report
— Personal report
» Reading:
— Today: ESA 7
— Thursday: ESA 9-9.2.1

RC Heli Example

RC Heli Example Il

Device-to-Device Communication

Device communication occurs at multiple
levels:

» Within the processor:

— CPU to memory
— CPU to serial I/0O device

* Processor to processor:
— Each sensor could have its own processor

— Some process must then coordinate sensor
data from various sources to make control
decisions

Device-to-Device Communication

It IS common for this communication to take
place on a bus:

 Often consists of multiple (parallel) wires

* Allows various devices to drive the bus
(but at different times)

 Allows for a certain degree of flexibility:
devices can be added or removed at boot
time or (in some case) real time

Buses

System buses

 Data bus

 Address bus: transmission of element
address information (e.g., a memory
address)

* High-speed and local to CPU

Buses

Examples: backplane

Connect CPU with memory and |/O control
devices (video, audio, disks, etc.)

« PCI: (what you have in your PCs)
» |[SA: the old PC standard

 VME: a competing standard (industrial
control)

» Local to computer

Buses

Examples: 1/0
Connect computer with external devices
» Universal Serial Bus (USB)
* Firewire
e |12C
« SPI
« CAN

« External to computer

Bus Control

Critical bus issues

« Who is in control?

— Solved with some form of bus arbitration
mechanism

* How is timing determined?
— Typically make use of a clock

Bus Arbitration

 Master device: can initiate a transfer of
data over the bus

« Slave device: must wait for transfer to be
Initiated

* When there are multiple masters: must
have some way to determine which one is
iIn control now

Bus Arbitration

Central control: a single device decides

Serial control:
— Control is given to one master

— If it does not need it, control is passed to the
next master

Self-selection: the masters decide for
themselves

Preemption: interrupting one master to
allow another to take control

Bus Use

Once arbitration is complete, we have:
* One device that will write to the bus
 One device that will read from it

* (In some cases, one device will both read
and write during a data exchange)

» Clock signal tells the reader when data
from the writer is valid

Bus Use

Protocol: rules for how data will be
exchanged

» How is the slave specified? (addressed)
« What do each of the bytes mean?
* When will they be transmitted?

« How does the writer know when the reader
nas received the data?

Inter IC (1°C) Bus

 Allows for multiple masters
— Arbitration: self selection

* Two wires only!
— Data transfer: SDA

— Clock: SCL (up to 400 kbs)
— (and a common ground)

« Slave addresses are transmitted on SDA
before other data is sent

% 21K Q
SCL -

SDA

Device 1 Device 2 Device 3 Device 4

* The writer of a line may pull the line low
(otherwise, it leaves the line floating)

* Master always runs the clock

|2C Bus: Start Condition
SDA AN

SCL AN

» Master starts the transmission by bringing
SDA low and then SCL low

» Constantly checks the state of SCL to
make sure that another has not brought it
down

— Aborts transmission if another master has
started a transmission

12C Bus: Transmission of a Byte

SDA MSB X X X X__LSB)

sc. /1 _/2_/3_/ || /8 _/ack\ __/

» Master generates SCL

 Either master or slave produces the data
(depending on the situation)

« ACK: acknowledgement bit

12C Bus: End Condition

SDA /
sc. 7

» Master allows SCL to go high, and then
SDA (order is important)

 After this operation, any other master can
take control of the bus

12C: Transmission of a Packet

Data packet:
A collection of bytes

» Each byte has a specific meaning (defined
by some higher-level protocol)

» With 12C, the first byte of a packet
contains address information (7 most
significant bits)

« The 8™ bit (least signficiant) determines
whether this is a read or a write operation

12C: Master Writes to a Slave
Start condition

Byte 1: Address with (LSB=0: indicates
write)
— Slave acknowledges byte (ACK bit = 0)

Byte 2: First data byte
— Slave acknowledges byte (ACK bit = 0)

Byte N+1: Nth byte; ACK=0
Stop condition

|2C: Master Reads from a Slave

Start condition

Byte 1: Address with (LSB=1: indicates
read)

— Slave acknowledges byte (ACK bit = 0)

Byte 2: First data byte from slave
— Master acknowledges byte (ACK bit = 0)

Byte N+1: Nth byte; ACK bit =1 (last byte)
Stop condition

12C Devices

Can have a large number of 1°C devices
on the same bus
— Restrictions as to bus size

EEPROM
Digital potentiometers
Thermal sensors

Compasses
A2D/D2A devices

12C on the Atmels

» Hardware support on the chip

» Can be configured as either a master or a
slave

* No OUlib support yet...

Project 4

Want: FSMs with wind direction sensor
Reality: only 2 functional encoders left

Solution: groups may attempt one of two
projects (which one is up to you

* Project 4a: FSMs and wind direction
* Project 4b: FSMs only

Project 4a: Robot Task

Initial condition: robot can see beacon to
the front

Move forward until a beacon is on the left
OR right

If right: move downwind until beacon is
observed on left

Move upwind until beacon is observed on
right

Project 4b: Robot Task

Initial condition: robot can see beacon to
the front

Move forward until a beacon is on the left
OR right

If right: continue moving forward until a
new beacon is observed on the right

Orient and move toward this beacon

Group Goals for Today

* Which project will you choose?
* What does the FSM look like?

Next Time

» Operating Systems

