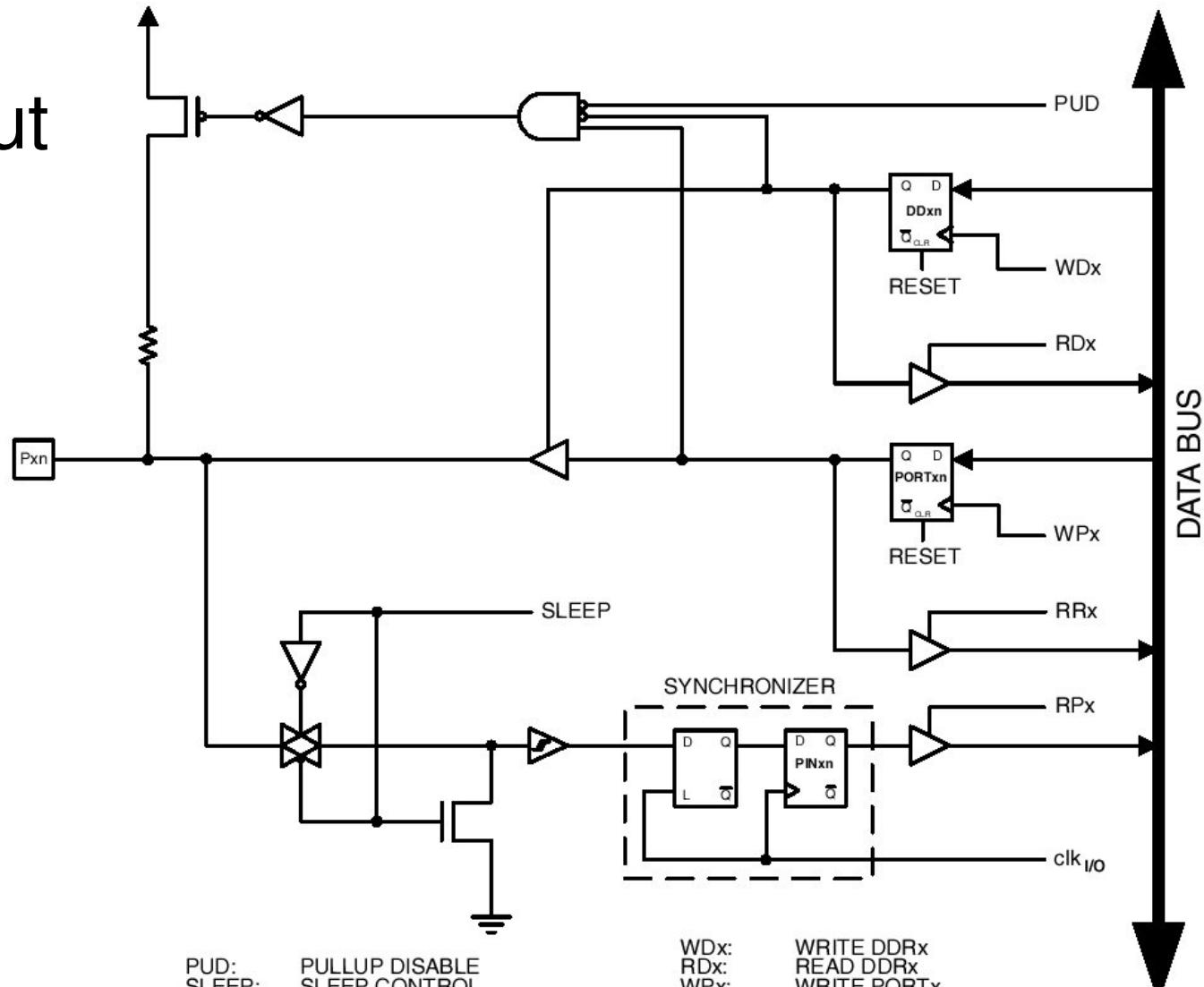


Final Exam

- When: 8:00-10:00 am Tuesday, May 9th
- Location: here (Felgar 303)
- 1/3: midterm material
 - See lecture notes for midterm preparation
- 2/3: material since midterm
- 1 page of personal notes
- No electronic devices/books/other notes

Pre-Midterm Material


- Basic gates
- Boolean algebra
- Digital circuits and circuit reduction
- Number representations
- Bit-wise operators
- Sequential logic
- Memory behavior (input/output signals, buses, addressing)

Finite State Machines

- Definition
 - States
 - Events
 - Transition function
 - Outputs and output function
- State transition diagrams
- Relationship to sequential logic
- FSMs for control

Basics of Digital Port I/O

- Input/output selection
 - Output value
 - Input

PUD: PULLUP DISABLE
SLEEP: SLEEP CONTROL
clk_{I/O}: I/O CLOCK

WDx:	WRITE DDRx
RDx:	READ DDRx
WPx:	WRITE PORTx
RRx:	READ PORTx REGISTER
RPx:	READ PORTx PIN

C Code

- Be prepared to read (and possibly fix) simple C code
- Look to lecture discussions of code and your projects as you preparation

Key Microprocessor Components

- General- versus special-purpose registers
- Instruction decoder
- Data memory (RAM)
- Program memory (EEPROM in our case)
- I/O modules
 - Digital input/output
 - Serial UART

Special-Purpose Registers

What does each do?

- Program counter
- Stack pointer
- Instruction register
- Status register

Analog Processing

- Digital to analog:
 - Pulse-width modulation
 - Resistive network
- Analog to digital:
 - Successive approximation

Polling vs Interrupts

- Implementation (in the abstract)
- Timing constraints

Interrupts

- What happens when an interrupt occurs?
- What happens as an interrupt completes?
- Shared data problem

Timers

- Input sources
- Prescalar
- Counter
- Interrupt generation
- How to compute:
 - Timer increment intervals
 - Interrupt intervals

Device-to-Device Communication

Buses

- Arbitration
- Preemption
- Addressing
- Clocking
- Protocol

Pulse-Width Modulation

- How information is encoded?
- Use in controlling average current
- Implementation (in the abstract)
- H-bridges

Misc

- Encoders
- Buffers

Multi-tasking

- What is a process? (versus a processor)
- Process states and state transitions
- Context switch
- Scheduling
 - Preemption
 - Round-robin
 - Priority
 - Shortest job first
 - Hybrids
 - Rate monotonic scheduling