Memory

* With combinatorial logic, we could only
implement “stateless” functions

» By introducing flip-flops, we could
remember something about the history of
the inputs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Memory

* With combinatorial logic, we could only
implement “stateless” functions

By introducing sequential logic (with flip-
flops), we could remember something
about the history of the inputs

How do we formalize this idea of “history”?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra
Sequential Logic Finite State Machines

Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic Finite State Machines

This will allow us to express controllers that
take history into account

Andrew H. Fagg: Embedded Real- 10
Time Systems: FSMs

Finite State Machines (FSMs)

Pure FSM form is composed of:

* A set of states

A set of possible inputs (or events)
A set of possible outputs

e A transition function:

— Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

11

Finite State Machines (FSMs)

States:

* Represent all possible “situations” that
must be distinguished

* At any given time, the system is in exactly
one of the states

 There is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

Finite State Machines (FSMs)

An example: our synchronous counter
» States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

13

Finite State Machines (FSMs)

An example: our synchronous counter

« States: the different combinations of the
digits: 000, 001, 010, ... 111

* |nputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

Finite State Machines (FSMs)

An example: our synchronous counter

* |nputs:

— Really only one: the event associated with the
clock transitioning from high to low

— We will call this “C”

» QOutputs: ?

Andrew H. Fagg: Embedded Real- 15
Time Systems: FSMs

Finite State Machines (FSMs)

An example: our synchronous counter
» QOutputs: same as the set of states

 Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

16

Finite State Machines (FSMs)

An example: our synchronous counter

* Transition function:

— On the clock event, transition to the next state
In the sequence

Andrew H. Fagg: Embedded Real- 17
Time Systems: FSMs

FSM Example:
Synchronous Counter

A Graphical Representation:

()

A Set Of States Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

18

FSM Example:
Synchronous Counter

A transition

\@ @
7

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

19

FSM Example:
Synchronous Counter

A transition

o

he event
®

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

20

FSM Example:
Synchronous Counter

A transition

©
of
he output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

21

FSM Example:
Synchronous Counter

The next transition

C/010
O

C/001

()

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

22

FSM Example:
Synchronous Counter

The next transition

C/010 C/011

010
) ()
C/001

Andrew H. Fagg: Embedded Real- 23
Time Systems: FSMs

FSM Example:
Synchronous Counter

The full transition set
C/010 C/011

010
) (@)

C/001 C/100

C/OOO\ Am
s (o)
C/111 " C/110

Andrew H. Fagg: Embedded Real- 24
Time Systems: FSMs

FSM Example:
Synchronous Counter

Inltlal condition
C/O1O C/011

x/OOO —
C/001 \

C/OO @ Am
C/111 “" C/110

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

25

Example Il: An Up/Down Counter

Suppose we have two events (instead of
one): Up and down

» How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

26

Example Il: An Up/Down Counter

From state 000, there are now two possible

transitions
®

U/001

D/111

Andrew H. Fagg: Embedded Real- 27

Time Systems: FSMs

Example Il: An Up/Down Counter

Likewise for state 001...

U/010

U/001
D/000

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

Example Il: An Up/Down Counter

The full transition set

U/O10»@ U/011
(00) ——FF——=()

U/OV D/001 D/010 U100
D/000 D /(:1\

O ©
\ D/100
- D/101
— =)
U/111 U0
Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

33

FSMs and Control

How do we relate FSMs to Control?
 States are our memory of recent inputs

* |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

34

FSMs and Control

How do we relate FSMs to Control?
 States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

» QOutputs are ?

Andrew H. Fagg: Embedded Real- 35
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
 States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

» Outputs are the control actions

Andrew H. Fagg: Embedded Real- 36
Time Systems: FSMs

Project 2: The Problem

Project 1:

* Implementation of a feedback control
circuit (in digital logic) that orients and then
moves toward a beacon

Project 2:

* Integrate this capabillity into a sequence of
movements

Andrew H. Fagg: Embedded Real- 37
Time Systems: FSMs

Project 2: The Problem

Primary behavior of the robot:

 Phase 1:
— Move toward beacon in front of the robot
— Scan for another beacon on the left
— When beacon is found, turn toward it

 Phase 2:

— Move toward beacon in front
— Scan for another beacon on the right
— When beacon is found, turn toward it

* Repeat

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

38

Project 2: The Problem

An exception occurs if the robot loses sight
of the forward beacon (no signal on either
the left or the right sensor pair)

If In phase 1:

» Rotate turret to the right

* |f a beacon is found, then turn the robot
toward it and continue with phase 1

 Else stop moving

Andrew H. Fagg: Embedded Real- 39
Time Systems: FSMs

Project 2: The Problem

Exception handling
If In phase 2:
* Rotate turret to the left

 |f a beacon is found, then turn the robot
toward it and continue with phase 2

 Else stop moving

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

40

Project 2: Step -1

Low-level control with the Atmel

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

41

Project 2: Step O

Circuit design o 0tm
/_7 JANNN

» PortB: pins 5
0,1,2 available AT TR
. " _ PC;C4PC3PC2PC 1PcoGl\H/zR]::AFVC1C>135PB41>133PB123131
» PortC: pins 0-5
Vv a| abl e) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
. . PC6 PD1I PD3 VCC PB6 PD5 PD7
» PortD: pins 0-7 Tzusuysuwyﬁnuuunulw

aval a_ble 16MHz XZALg
AVRISP —— —e AN 15pF
Connector 10K ohm ‘M
i 200 ohm
ST
Andrew H. Fagg: Embedded Real- 42

Time Systems: FSMs

Project 2: Step 1

Design the FSM for this problem
 What are the states?

« What are the sensory signals?
« What are the inputs?

« What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

43

Project 2: Step 2

Design the FSM for this problem

« What is the mapping from sensory signals
to events?

Andrew H. Fagg: Embedded Real- 44
Time Systems: FSMs

Project 2: Step 3

Design the FSM for this problem

 What does the transition function look
like?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Project 2: Step 4

Design the FSM for this problem

« What is the mapping from output to robot
action?

« What must the robot do if no event
occurs?

Andrew H. Fagg: Embedded Real- 46
Time Systems: FSMs

Project 2: Step 5

Implementation

« Write a C program that implements your
FSM

» Burn this onto an Atmel mega8 processor
« Get it to work!

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

47

Next Time

 Homework 4 discussion
» Midterm preparation
» Another FSM control example

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

48

Implementing Finite State
Machines

How would we implement an FSM with the
logic components we have studied so far?

Andrew H. Fagg: Embedded Real- 49
Time Systems: FSMs

Today

* Midterm exam
« Lab 2 (part 1 due Thursday)

— Demonstration & code review
— Hand in code via D2L
* Finite State Machines
— Control example
— Coding

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

53

Midterm

* Mean: 90.2

e Standard
deviation: 8.0

P
T

75 80 85 an 85 100 105

Andrew H. Fagg: Embedded Real- 54
Time Systems: FSMs

Lab 2

* You may change the prototype for one
required function, e.q.:

uilnt8_t orient _new beacon(uint8_t sensor[4], unit8_t direction)

 Demonstration: make sure that you show
the functionality of all 5 of your required
functions

Andrew H. Fagg: Embedded Real- 95
Time Systems: FSMs

FSMs: A Control Example

Suppose we have a vending machine:
» Accepts dimes and nickels

« Will dispense one of two things once $.20
has been entered: Jolt or Buzz Water

— The “user” requests one of these by pressing
a button

* Ignores select if < $.20 has been entered
 Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real- 56
Time Systems: FSMs

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

57

Vending Machine FSM

What are the states?
* $0

. $.05

¢« $.10

¢« $.15

« $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

58

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

59

Vending Machine FSM

What are the inputs/events?
nput nickel (N)

nput dime (D)

Select Jolt (J)

Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

60

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

61

Vending Machine FSM

What are the outputs?

Return nickel (RN)

Return dime (RD)

Dispense Jolt (DJ)

Dispense Buzz Water (DBW)
Nothing (£)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

62

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

63

Vending Machine Design

What is the initial state?
¢ S =30

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

64

Vending Machine Design

What can happen from Event

S =9%07

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

65

Vending Machine Design

What can happen from
S =$07

What does this part of
the diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.05 Z
D $.10 Z
J $0 Z
BW $0 Z

Time Systems: FSMs

66

Vending Machine Design

A piece of the state diagram:

\ N/Z ‘
J/Z D/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

67

Vending Machine Design

What can happen from Event

S = $0.057

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

68

Vending Machine Design

What can happen from
S = $0.057

What does the modified
diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.10 /
D $.15 /
J $.05 /
BW $.05 /

Time Systems: FSMs

69

Vending Machine Design
A piece of the state diagram:
;/@/ZQ
\ V

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

70

Vending Machine Design

What can happen from Event

S =$0.107?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

71

Vending Machine Design

What can happen from Event

S =$0.107?

Next | Output
State
N $.15 /
D $.20 /
J $.10 /
BW $.10 /

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

72

Vending Machine Design

A piece of the state diagram:

J/Z
BW/Z O

“/\/

J/Z
BW/Z

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

73

Vending Machine Design

What can happen from Event

S =$0.157

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

74

Vending Machine Design

What can happen from
S =%$0.157

Event | Next | Output
State
N $.20 /
D $.20 RN
J $.15 /
BW $.15 /

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

75

Vending Machine Design

A piece of the state diagram:

J/Z J/Z
BW/Z O O BW/Z

V\/%

J/Z
BW/Z

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

76

Vending Machine Design

Finally: what can

happen from S =

$0.207

Event

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

77

Vending Machine Design

Finally, what can
happen from S =

$0.207

Event | Next | Output
State
N $.20 RN
D $.20 RD
J $0 DJ
BW $0 DBW

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

78

Vending Machine Design

The complete state diagram:

J/Z J/Z
BW/Z O O BW/Z

y
‘ \ / \BI/RN N/RN
Q* D/RD

J/Z
BW/Z

J/Z
BW/Z

J/DJ
BW /DBW

Andrew H. Fagg: Embedded Real- 79
Time Systems: FSMs

A Robot Control Example

Consider the following task:

 The robot is to move toward the first
beacon that it “sees”

 The robot searches for a beacon in the
following order: right, left, front

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 80
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case O:
<handle state 0>
break;
case 1:
<handle state 1>
break;
case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

81

FSMs in C
<£E£:state ::::) // Initial state

whileT1)

<do some proces
switch(state) {

case O:
<handle state 0>

.ng of the sensory inputs>

preak; Variable

sase & declaration and
<handle state 1> cclaralio
break; Initialization

case 2:

}
}
Andrew H. Fagg: Embedded Real- 82

Time Systems: FSMs

FSMs in C
int state = 0; <ZZ:§nitial st}EE)

while (1) {
<do some processing of the nsory 1inputs>
switch(state) {
case O:
<handle state 0>
preak; A comment (use
case 4 liberally)
<handle state 1> | y
break;
case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

83

FSMs in C

switch (state)
case O:
<handle state
preak; Loop forever
case 1:
<handle state 1>
break;

case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

84

FSMs in C

int state = 0; // Initial state
while (1) {

<Z§§ some processing of the sensory input52:>
switch (state) 13

case O0O:
<handle state 0>
break; “pseudo code”:
case l: not really code
<handle state 1> . y ’
break; but indicates what
case 2: .. IS to be done

Andrew H. Fagg: Embedded Real- 85
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {

<Z§§ some processing of the sensory input52:>
switch (state) 13

case O0: .] .
chandle state 0> In this case: we will
break; translate the

case 1: current sensory
;handle state 1> inputS intO 9

reak; .
case 2: . representation of
) an event (if one
} has happened)
Andrew H. Fagg: Embedded Real- 86

Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do_some processing of the sensory 1nputs>

switch(state)

case O: \

handle state 0> Switch/case syntax
break; allows us to cleanly

case l: perform many
<handle state 1> @ ” .
oreak; If(x==y)” operations

case 2: ..

)
)
Andrew H. Fagg: Embedded Real- 87

Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>

switch(state) {
case 0: J

<handle state 0> If State==0, then
break; execute the

case I: following code
<handle state 1>
break;

case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

88

FSMs in C

int state = 0; // Initial state

while (1) {
<do some processing of the sensory 1nputs>
switch(state) {

case O:]
Ghandle state 05y This code can be as
break; complex as
case 1: necessary
<handle state 1>
break;
case 2:

Andrew H. Fagg: Embedded Real- 89
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case 0:

chandle state break says to exit
@reakD// the switch (don't
case 1: forget it or strange
chandie state 2 things will happen!)

break;

case 2: ..

Andrew H. Fagg: Embedded Real- 90
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case 0:

<handle state If state==1, then ...

break;

<E§S€ 1E:>

<handle state 1>
break;

case 2:

Andrew H. Fagg: Embedded Real- 91
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case O:
<handle state 0>
break;

End of the switch
block

case 1:
e state 1>

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

92

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case O:
<handle state 0>
break;

End of the while
block

case 1:

<hand#e state 1>

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

93

Last Time

* Finite State Machines for control
 FSM implementations in C

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

98

Today

* More on FSM implementation
« Assembly language

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

99

Administrivia

Project 2, part 1 due TODAY
Project 2, part 2 due in one week
Homework 5 is on hold

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

100

Finite State Machines

* Very useful tool to describe sequential
behavior.

« But — when used for control, we deviate
from the theory in several key ways

Andrew H. Fagg: Embedded Real- 101
Time Systems: FSMs

FSMs As Controllers

* Need code that translates sensory inputs
into FSM events

« An FSM output can require an arbitrary
amount of time
— We will often implement this control action as
a separate function call
 Control actions will not necessarily be
fixed (but could be a function of sensory
input)

Andrew H. Fagg: Embedded Real- 102
Time Systems: FSMs

FSMs As Controllers (cont)

* We might choose to leave some events
out of the implementation

— Only some events may be relevant to certain
states

 When in a state, the FSM may also issue

control actions (even when a new event
has not arrived)

— Again, this may be implemented as a function
call

Andrew H. Fagg: Embedded Real- 103
Time Systems: FSMs

FSMs in C

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case O:
<handle state 0>
break;
case 1:
<handle state 1>
break;
case 2:

Andrew H. Fagg: Embedded Real- 104
Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case O:
<handle state 0>
break;

default:
<handle default case>
break;

}

<do some low—level control>

Andrew H. Fagg: Embedded Real- 105
Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while (1) {
<do some processing of the sensory 1nputs>
switch(state) {
case 0:

<hani?e state 0> MatCheS any state
| brei_,// (|f we I’eaCh th|S
poiny

<handle default case>
break;

}

<do some low—level control>

Andrew H. Fagg: Embedded Real- 106
Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = 0; // Initial state

while (1) {
<do some processing of the sensory 1nputs>
switch(state) {

case O:
<handle state 0> (pOSS|ny) a|ter
break;
: some control
default: OUtpUtS (e.g.,
<handle default se> Steering direction)
break;
}
(Eégsome low—level contréEE:D
}
Andrew H. Fagg: Embedded Real- 107

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch (event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;
case EVENT_ DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;
case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater
display NOT_ ENOUGH () ;
break;
case EVENT NONE: // No event
break; // Do nothing
i
break;
Andrew H. Fagg: Embedded Real- 108

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE _10cents:
QTS ready been deposited
@ W CKEL: // Nickel
state =QTATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // D¥N
state = STATE 20ce

// Transition to $.2

break;
case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display NOT_ ENOUGH () ; .

break; Another integer
case EVENT NONE: // No event

break; // Do nothing

i

break;

Andrew H. Fagg: Embedded Real- 109
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has eposited
SWJ event) {
case EVENT NICKEL: // Nickel
State = STATE _las

Ls; // Transition to $.15

break;
case EVENT_ DIME: // Dime
state = STATE_20cents; /N Transition to $.2
break;
case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater
display NOT_ ENOUGH () ; .
S A nickel has
case EVENT NONE: // No event been recelved
break; // Do nothing

i

break;

Andrew H. Fagg: Embedded Real- 110
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch (event) {

cas T NICREL : 7 NIt
state = STATE_l5centsz::zz:§ransition to $.15
break;

case EVENT DrIme= T—TIne
state = STATE_20cents; /NTransition to $.2
break;

case EVENT_JOLT: // Select Jolt

case EVENT_BUZZ: // Select Buzzwater
display NOT_ ENOUGH () ;
break;

case EVENT_NONE: // No event . .
break; // o notning NEXt iteration of

Change state for

¥ the while() loop

break;

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch (event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_ DIME: // Dime

// Transition to $.2

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater
display NOT_ ENOUGH () ;
break;

If any of these
match, then execute
the following code

case EVENT_ NONE: // No event))
break; // Do nothing (Which does nothing
}i in this example)
break;
Andrew H. Fagg: Embedded Real- 112

Time Systems: FSMs

A Note on “Style” in C

The numbers that we assigned to the
different states are arbitrary (and at first
glance, hard to interpret)

Instead, we can define constant strings
that have some meaning

Replace:0,1,2,3,4,5

With: STATE_00, STATE_05, STATE_10,
STATE_15, STATE_20

Andrew H. Fagg: Embedded Real- 113
Time Systems: FSMs

A Note on “Style” in C

In C, this is done by adding some
definitions to the beginning of your
]Elro)gram (either in the .c file or the .h

ile):

#define STATE 00 0
#define STATE 05 1
#define STATE 10 2
#define STATE 15 3
#define STATE 20 4
Andrew H. Fagg: Embedded Real- 114

Time Systems: FSMs

