
Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

5

Memory

• With combinatorial logic, we could only
implement “stateless” functions

• By introducing flip-flops, we could
remember something about the history of
the inputs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

6

Memory

• With combinatorial logic, we could only
implement “stateless” functions

• By introducing sequential logic (with flip-
flops), we could remember something
about the history of the inputs

How do we formalize this idea of “history”?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

7

Formalizing Memory

Combinatorial Logic Boolean Algebra

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

8

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

9

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic Finite State Machines

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

10

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic Finite State Machines

This will allow us to express controllers that
take history into account ….

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

11

Finite State Machines (FSMs)

Pure FSM form is composed of:
• A set of states
• A set of possible inputs (or events)
• A set of possible outputs
• A transition function:

– Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

Finite State Machines (FSMs)

States:
• Represent all possible “situations” that

must be distinguished
• At any given time, the system is in exactly

one of the states
• There is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

13

Finite State Machines (FSMs)

An example: our synchronous counter
• States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

Finite State Machines (FSMs)

An example: our synchronous counter
• States: the different combinations of the

digits: 000, 001, 010, … 111

• Inputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

15

Finite State Machines (FSMs)

An example: our synchronous counter
• Inputs:

– Really only one: the event associated with the
clock transitioning from high to low

– We will call this “C”

• Outputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

16

Finite State Machines (FSMs)

An example: our synchronous counter
• Outputs: same as the set of states

• Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

17

Finite State Machines (FSMs)

An example: our synchronous counter
• Transition function:

– On the clock event, transition to the next state
in the sequence

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

18

FSM Example:
Synchronous Counter

A Graphical Representation:

000

001
010

011

100

101
110

111

A set of states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

19

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

20

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

21

FSM Example:
Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

22

FSM Example:
Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

23

FSM Example:
Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010 C/011

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

24

FSM Example:
Synchronous Counter

The full transition set

000

001
010

011

100

101
110

111

C/010 C/011

C/100

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

25

FSM Example:
Synchronous Counter

Initial condition

000

001
010

011

100

101
110

111

C/010 C/011
x/000

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

26

Example II: An Up/Down Counter

Suppose we have two events (instead of
one): Up and down

• How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

27

Example II: An Up/Down Counter

From state 000, there are now two possible
transitions

000

001
010

011

100

101
110

111

U/001

D/111

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

Example II: An Up/Down Counter

Likewise for state 001…

000

001
010

011

100

101
110

111

U/001
D/000

D/111

U/010

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

Example II: An Up/Down Counter

The full transition set

000

001
010

011

100

101
110

111

U/010 U/011

U/100

U/101

U/110U/111

U/000

U/001
D/000

D/001 D/010

D/011

D/100

D/101
D/110

D/111

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

33

FSMs and Control

How do we relate FSMs to Control?
• States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

34

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

35

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

36

FSMs and Control

How do we relate FSMs to Control?
• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are the control actions

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

37

Project 2: The Problem

Project 1:
• Implementation of a feedback control

circuit (in digital logic) that orients and then
moves toward a beacon

Project 2:
• Integrate this capability into a sequence of

movements

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

38

Project 2: The Problem

Primary behavior of the robot:
• Phase 1:

– Move toward beacon in front of the robot
– Scan for another beacon on the left
– When beacon is found, turn toward it

• Phase 2:
– Move toward beacon in front
– Scan for another beacon on the right
– When beacon is found, turn toward it

• Repeat

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

39

Project 2: The Problem

An exception occurs if the robot loses sight
of the forward beacon (no signal on either
the left or the right sensor pair)

If in phase 1:
• Rotate turret to the right
• If a beacon is found, then turn the robot

toward it and continue with phase 1
• Else stop moving

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

40

Project 2: The Problem

Exception handling
If in phase 2:
• Rotate turret to the left
• If a beacon is found, then turn the robot

toward it and continue with phase 2
• Else stop moving

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

41

Project 2: Step -1

Low-level control with the Atmel

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

42

Project 2: Step 0

Circuit design
• PortB: pins

0,1,2 available
• PortC: pins 0-5

available
• PortD: pins 0-7

available

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

43

Project 2: Step 1

Design the FSM for this problem
• What are the states?
• What are the sensory signals?
• What are the inputs?
• What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

44

Project 2: Step 2

Design the FSM for this problem
• What is the mapping from sensory signals

to events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Project 2: Step 3

Design the FSM for this problem
• What does the transition function look

like?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

46

Project 2: Step 4

Design the FSM for this problem
• What is the mapping from output to robot

action?
• What must the robot do if no event

occurs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

47

Project 2: Step 5

Implementation
• Write a C program that implements your

FSM
• Burn this onto an Atmel mega8 processor
• Get it to work!

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

48

Next Time

• Homework 4 discussion
• Midterm preparation
• Another FSM control example

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

49

Implementing Finite State
Machines

How would we implement an FSM with the
logic components we have studied so far?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

53

Today

• Midterm exam
• Lab 2 (part 1 due Thursday)

– Demonstration & code review
– Hand in code via D2L

• Finite State Machines
– Control example
– Coding

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

54

Midterm

• Mean: 90.2
• Standard

deviation: 8.0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

55

Lab 2

• You may change the prototype for one
required function, e.g.:
uint8_t orient_new_beacon(uint8_t sensor[4], unit8_t direction)

• Demonstration: make sure that you show
the functionality of all 5 of your required
functions

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

56

FSMs: A Control Example

Suppose we have a vending machine:
• Accepts dimes and nickels
• Will dispense one of two things once $.20

has been entered: Jolt or Buzz Water
– The “user” requests one of these by pressing

a button

• Ignores select if < $.20 has been entered
• Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

57

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

58

Vending Machine FSM

What are the states?
• $0
• $.05
• $.10
• $.15
• $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

59

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

60

Vending Machine FSM

What are the inputs/events?
• Input nickel (N)
• Input dime (D)
• Select Jolt (J)
• Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

61

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

62

Vending Machine FSM

What are the outputs?
• Return nickel (RN)
• Return dime (RD)
• Dispense Jolt (DJ)
• Dispense Buzz Water (DBW)
• Nothing (Z)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

63

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

64

Vending Machine Design

What is the initial state?
• S = $0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

65

Vending Machine Design

What can happen from
S = $0?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

66

Vending Machine Design

What can happen from
S = $0?

What does this part of
the diagram look like?

Z

Z

Z

Z

Output

$0BW

$0J

$.10D

$.05N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

67

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

68

Vending Machine Design

What can happen from
S = $0.05?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

69

Vending Machine Design

What can happen from
S = $0.05?

What does the modified
diagram look like?

Z

Z

Z

Z

Output

$.05BW

$.05J

$.15D

$.10N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

70

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

71

Vending Machine Design

What can happen from
S = $0.10?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

72

Vending Machine Design

What can happen from
S = $0.10?

Z

Z

Z

Z

Output

$.10BW

$.10J

$.20D

$.15N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

73

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

74

Vending Machine Design

What can happen from
S = $0.15?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

75

Vending Machine Design

What can happen from
S = $0.15?

Z

Z

RN

Z

Output

$.15BW

$.15J

$.20D

$.20N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

76

Vending Machine Design
A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

J/Z
BW/Z

N/Z
D/RN

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

77

Vending Machine Design

Finally: what can
happen from S =
$0.20?

OutputNext
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

78

Vending Machine Design

Finally, what can
happen from S =
$0.20?

DBW

DJ

RD

RN

Output

$0BW

$0J

$.20D

$.20N

Next
State

Event

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

79

Vending Machine Design
The complete state diagram:

$0

$.05
N/Z

x/Z

$.10
D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z
BW/Z

$.20

J/Z
BW/Z

N/Z

D/Z

J/Z
BW/Z

N/Z
D/RN N/RN

D/RD

J / DJ
BW / DBW

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

80

A Robot Control Example

Consider the following task:
• The robot is to move toward the first

beacon that it “sees”
• The robot searches for a beacon in the

following order: right, left, front

What is the FSM representation?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

81

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

82

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

Variable
declaration and
initialization

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

83

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

A comment (use
liberally)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

84

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

Loop forever

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

85

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

“pseudo code”:
not really code,
but indicates what
is to be done

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

86

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

In this case: we will
translate the
current sensory
inputs into a
representation of
an event (if one
has happened)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

87

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

Switch/case syntax
allows us to cleanly
perform many
“if(x==y)” operations

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

88

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

If state==0, then
execute the
following code

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

89

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

This code can be as
complex as
necessary

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

90

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

break says to exit
the switch (don’t
forget it or strange
things will happen!)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

91

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

If state==1, then …

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

92

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

End of the switch
block

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

93

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

End of the while
block

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

98

Last Time

• Finite State Machines for control
• FSM implementations in C

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

99

Today

• More on FSM implementation
• Assembly language

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

100

Administrivia

• Project 2, part 1 due TODAY
• Project 2, part 2 due in one week
• Homework 5 is on hold

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

101

Finite State Machines

• Very useful tool to describe sequential
behavior.

• But – when used for control, we deviate
from the theory in several key ways

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

102

FSMs As Controllers
• Need code that translates sensory inputs

into FSM events
• An FSM output can require an arbitrary

amount of time
– We will often implement this control action as

a separate function call

• Control actions will not necessarily be
fixed (but could be a function of sensory
input)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

103

FSMs As Controllers (cont)

• We might choose to leave some events
out of the implementation
– Only some events may be relevant to certain

states

• When in a state, the FSM may also issue
control actions (even when a new event
has not arrived)
– Again, this may be implemented as a function

call

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

104

FSMs in C
int state = 0; // Initial state

while(1) {

<do some processing of the sensory inputs>

switch(state) {

case 0:

<handle state 0>

break;

case 1:

<handle state 1>

break;

case 2: …

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

105

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

:
default:

<handle default case>
break;

}
<do some low-level control>

}

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

106

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

:
default:

<handle default case>
break;

}
<do some low-level control>

}

Matches any state
(if we reach this
point)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

107

FSMs in C (some other
possibilities)

int state = 0; // Initial state
while(1) {

<do some processing of the sensory inputs>
switch(state) {

case 0:
<handle state 0>
break;

:
default:

<handle default case>
break;

}
<do some low-level control>

}

(possibly) alter
some control
outputs (e.g.,
steering direction)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

108

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

109

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

Another integer

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

110

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

A nickel has
been received

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

111

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

Change state for
next iteration of
the while() loop

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

112

FSMs in C: Processing for
Individual States

case STATE_10cents:
// $.10 has already been deposited
switch(event) {

case EVENT_NICKEL: // Nickel
state = STATE_15cents; // Transition to $.15
break;

case EVENT_DIME: // Dime
state = STATE_20cents; // Transition to $.2
break;

case EVENT_JOLT: // Select Jolt
case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();
break;

case EVENT_NONE: // No event
break; // Do nothing

};
break;

If any of these
match, then execute
the following code
(which does nothing
in this example)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

113

A Note on “Style” in C

• The numbers that we assigned to the
different states are arbitrary (and at first
glance, hard to interpret)

• Instead, we can define constant strings
that have some meaning

• Replace: 0, 1, 2, 3, 4, 5
• With: STATE_00, STATE_05, STATE_10,

STATE_15, STATE_20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

114

A Note on “Style” in C

In C, this is done by adding some
definitions to the beginning of your
program (either in the .c file or the .h
file):

#define STATE_00 0
#define STATE_05 1
#define STATE_10 2
#define STATE_15 3
#define STATE_20 4

