Project 3 Adjustments

« Part 1 now due: April 11t (one week)
— This is a “soft” deadline

 Part 2 now due: April 18" (two weeks)

(project 4 complexity will be adjusted
accordingly)

Also: see discussion on D2L about types

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Last Time

Digital to analog conversion

* Pulse-width modulation (PWM)

» Resistive networks

Analog to digital conversion

« Successive approximation

» Coding examples with the mega8

Project 3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Today: Input/Output

» |/O via polling
« Serial interfaces
* |/O with interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Administrivia
 Homework 5 due today @5:00

* Project 2 demonstrations need to be
completed by Tueday @3:30

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Example: Stable Hovering

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Lessons Learned from Lab 2

* Timing of sensory and control actions can
be important

» Sensors and actuators are rarely ideal
— Must account for this in our code

» Debugging can be a long process
— Control the experiments
— Implement and test in stages

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Input/Output Systems

Processor needs to communicate with other
devices:

* Receive signals from sensors
« Send commands to actuators
* Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

/O Systems

Communication can happen in a variety of
ways:

» Binary parallel signal (e.g., the interface
that you used for your robot)

 Serial signals
* Analog

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

/O Systems

Many devices are operating independently
of the processor — except when
communication happens

» We say that these devices are acting
asynchronously of the processor

* The processor must have some way of
knowing that something has changed with
the device (e.g., that it is ready to send or
receive information)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

An Example:
SICK Laser Range Finder

Laser is scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

Spatial resolution: ~.5
degrees, 1 cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 10
Time Systems: Input/Output

/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {
x = PINB & 0x10;
twhile (x == 0);

y = PINC ..

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

11

/0 By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

12

/O By Polling

What is wrong with this approach?

* In embedded systems, we are typically
managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

13

/0 By Polling

» We can potentially be waiting for a long
time before the state changes

— We call this busy waiting

* The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

14

/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>
}while (x == 0);
y = PINC ..

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

15

Serial Communication

« Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real- 16
Time Systems: Input/Output

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

» Typically, each side has a clock to tell it
when to write/read a bit

* |[n some cases, the sender will also send a
clock signal (on a separate line)

* |In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real- 17
Time Systems: Input/Output

Serial Communication

« Hardware implementations are very
common:

— Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

— Handles all of the bit-level manipulation

— You only have to interact with it on the byte
level

Andrew H. Fagg: Embedded Real- 18
Time Systems: Input/Output

Mega8
UART

UBRR[H:L]

0sC

Y

BAUD RATE GENERATOR

| sYNC LOGIC BIN

a| CONTROL

XCK

—— ™ |
UDR (Transmit) CONTROL |
* PARITY |
|'. GENERATOR
@ PIM |
o ;
&0 TRANSMIT SHIFT REGISTER CONTROL —'- TxD
<
iV T VI |
g Receiver |
i CLOCK RX |
RECOVERY CONTROL |
DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY CONTROL 4J|— RxD
¥ |
PARITY |
HAR {Reneke) CHECKER |
|
UCSRA UCSREB UCSRC

§

3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

19

Mega8
UART

* Transmit pin
(PD1)

UBRR[H:L]

0sC

Y

BAUD RATE GENERATOR

| sYNC LOGIC BIN

a CONTROL

DATABUS

|
|
|
|
|
|
|
-J-| XCK
|

TxD

Receiver |

» clock RX |

RECOVERY contRoL |

I—- I_ |
DATA PIN

—:D. RECEIVE SHIFT REGISTER 3 coremn: 4J|— RxD

¥ |

PARITY |

HAR {Reneke) CHECKER |

|

UCSRB UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

20

Mega8
UART
* Transmit pin
(PD1)

 Transmit
shift register

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

XCK
h] CONTROL
1 # 7777 Transmitter |
_— ™ |
UDR (Transmit) CONTROL |
* PARITY |
|" GEMERATOR |
PIN

TRANSMIT SHIFT REGISTER R i
|
————————————————————— P 1
eceliver |
& clLock R |
RECOVERY COMTROL |
I—- |_ |

DATA PIN

—:D. RECEIVE SHIFT REGISTER RECBVERY ORI 4J|— RxD
¥ |
PARITY |
HAR {Fagatics CHECKER |
|

UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

21

Mega8
UART

* Receive pin
(PDO)

UBRR[H:L]

0sC

Y

BAUD RATE GENERATOR

DATABUS

PARITY

REGISTER

| ! GENERATOR

™ CLOC
RECOVERY

a CONTROL

XCK

TX
CONTROL

|
|
|
|
|
|
|
s s fe— o],
|
|

|
|
|
ity | TxD
CONTROL -

Receiver

RX
CONTROL

|
—————— il
|
|
|
|

RECEIVE SHIFT REGISTER

DATA
RECOVERY

PIN

CONTROL

RxD

Y

UDR (Recenvet——]

PARITY
CHECKER

e o e s e, e e, e’ e s e s i, e e e il

UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

22

Mega8
UART
* Receive pin
(PDO)

* Receive
shift register

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC BIN

h] CONTROL oK
" Transmitter |
o > |
UDR (Transmit) CONTROL |
* PARITY |
|" GENERATOR
w PIN |
2 ;
2 TRANSMIT SHIFT REGISTER conTRrOL ™ T*0
.:I: -
gV T |
g Receiver |
& CLOCK RX |
RECOVERY CONTROL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER REE AV ERY D 4J|— RxD
¥ |
PARITY |
HAR {Reneke) CHECKER |
|
UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

23

Mega8 UART C Interface

ioinit () : Initialize the port

getchar () : receive a character

kbhit () : Is there a character in the buffer?
putchar () : put a character out to the port

See the Atmel FAQ from the main class web
page

Andrew H. Fagg: Embedded Real- 24
Time Systems: Input/Output

Mega8 UART C Interface

printf () : formatted output
scanf () : formatted input

See the LibAvr documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real- 25
Time Systems: Input/Output

Serial I/0O by Polling

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

Andrew H. Fagg: Embedded Real- 26
Time Systems: Input/Output

/O By Polling: An Alternative

Polling works great ... but:

» We have to guarantee that our “something
else” does not take too long (otherwise,
we may miss the event)

» Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 27
Time Systems: Input/Output

/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* We know the event is coming very soon
* We must respond to the event very quickly

(both are measured in nano- to micro-
seconds)

Andrew H. Fagg: Embedded Real- 28
Time Systems: Input/Output

An Alternative: Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes an interrupt
handler (a small piece of code)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real- 29
Time Systems: Input/Output

Some Sources of Interrupts
(Mega8)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
 Processor reset

« The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

30

Interrupts

There are many possible interrupts
» How do we know which one has occurred?

» How does the processor respond to a
specific interrupt?

Andrew H. Fagg: Embedded Real- 31
Time Systems: Input/Output

Interrupts

How do we know which interrupt has
occurred?

* The mega8 hardware identifies each
interrupt with a unique integer

How does the processor respond to a
specific interrupt?

* The processor stores an interrupt table in
program memory

Andrew H. Fagg: Embedded Real- 32
Time Systems: Input/Output

Mega8 Interrupt Table Implementation

addressLabels Code

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He)

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 33

Time Systems: Input/Output

Mega8 Interrupt Table Implementation

addressLabels Code

Address in
the program

memory

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He)

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 34

Time Systems: Input/Output

Mega8 Interrupt Table Implementation

addressLabels Code

Comments

s000 rijmp RESET ; Reset Handler
s001 rijmp EXT_INTO ; IRQ0 Handler
s002 rjmp EXT_INT1 ; IRQ1 Handler
s0 rijmp TIM2_COMP ; TimerZ Compare Handler
s004 rjmp TIM2_OVF ; Timer2 Overflow Handler
5005 rjmp TIMI1_CAPT ; Timerl Capture Handler
Change s006 rijmp TIM1 COMEA ; Timerl Comparel Handler
program s007 rjmp TIM1_COMFR ; Timerl CompareB Handler
COunter tO s008 rjmp TIM1_OVF ; Timerl Overflow Handler
. 5009 rijmp TIMO_OVF ; Timer0 Overflow Handler
the |OCatIOn s00a rjmp SPI_STC ; SPI Transfer Complete Handler
identified by $00b rimp USART_RXC ; USART RX Complete Handler
“EXT INT-‘ » 500c rjmp USART_UDRE ; UDR Empty Handler
s00d rjmp USART_TXC ; USART TX Complete Handler
s00e rjmp ADC ; ADC Conversion Complete Handler
S00f rijmp EE_RDY ; EEPROM Ready Handler
s010 rjmp ANA_COMP ; Analog Comparator Handler
S011 rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 35

Time Systems: Input/Output

Interrupt Example

Suppose we are executing the
“something else” code:

LDS R1 (A)<+— PC
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

36

An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

37

An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)
CP R2, R1 < PC
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

38

An Example

An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1 «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 st regg Emoossos et

Time Systems: Input/Output

39

An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1—»
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3 st regg Emoossos et

Time Systems: Input/Output

rimp EXT_INT1 «— PC

40

An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
DSR2 (B)

» BRGE 3
LDS R3 (D \ remember this location
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

41

An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) PC;:LDS R1 (G)
CP R2, Rl—» rjmp EXT_INTT LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 42

Time Systems: Input/Output

An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 PC —»LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 43

Time Systems: Input/Output

An Example
Execute the interrupt handler

EXT INT1:
LDS R1 (A)

DS R2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
DS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 44

Time Systems: Input/Output

An Example
Execute the interrupt handler

EXT INTH:
=05 1A LDS R1 (G)
LDS R2 (B) o8 5 (1)
CP R2, R1
> BRGE 3 o _ ADDRI,R2
LDS R3 (D) -
ADD R3, R1 RET]

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 45

Time Systems: Input/Output

An Example

Return from interrupt

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
oP R2, R LDS RS (1)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RET!

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 46

Time Systems: Input/Output

An Example

Return from interrupt

EXT INT1:
DS R1 (A)
DS R2 (B) DS R1 (G)
cP R2, A1 LDS R5 (1

» BRGE 3 <— PC
DS R3 (D)\ -
ADD R3, R1 RET]
STS (D), R3 avrew i Fago: Embedcod Real .

Time Systems: Input/Output

ADD R1, R2

An Example

Continue execution with original

EXT INTH:
LDS R1 (A)

CP R2. R1 LDS R> (L)
SRGE 3 ADD R1. R2
DS R3 (D) «— pPC -

ADD R3, R1 RET

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 48

Time Systems: Input/Output

An Example

Continue execution with original

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, R1ie— PC
STS (D)s R3 Andrew H. Fagg: Embedded Real- 49

Time Systems: Input/Output

Interrupt Routines

» Generally a very small number of
instructions

— We want a quick response so the processor
can return to what it was originally doing

» Register use

— If the interrupt routine makes use of registers,
then it must restore their state before
returning

— We accomplish this through the use of a
stack

Andrew H. Fagg: Embedded Real- 50
Time Systems: Input/Output

The Stack

A hardware-supported data structure
composed of:

* A block of memory

A stack pointer (SP) that indicates the
current top of the stack

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

51

The Stack (an example)

Ox45 «— SP

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

The Stack (an example)

Operation:
PUSH R1

(assume R1 contains 0x31)

Ox45 «— SP

Andrew H. Fagg: Embedded Real- 53
Time Systems: Input/Output

The Stack (an example)

Operation:
PUSH R1

(assume R1 contains 0x31)

0x31| «— SP
0x45

Andrew H. Fagg: Embedded Real- 54
Time Systems: Input/Output

The Stack (an example)

Now perform:
PUSH R5

(assume R5 contains 0xF3)

0x31| «— SP
0x45

Andrew H. Fagg: Embedded Real- 95
Time Systems: Input/Output

The Stack (an example)

Now perform:
PUSH R5

(assume R5 contains 0xF3)

OxF3 <+ SP
Ox31
0x45

Andrew H. Fagg: Embedded Real- 56
Time Systems: Input/Output

The Stack (an example)

The interrupt routine (or
function) now performs its

job ...
OxF3 <+ SP
Ox31
0x45

Andrew H. Fagg: Embedded Real- 57
Time Systems: Input/Output

The Stack (an example)

OxF3

Ox31

0x45

The interrupt routine (or
function) now performs its
job (changing R1 and
R5)... and now restores
the state of R5 and R1 ...

<« SP

Andrew H. Fagg: Embedded Real- 58
Time Systems: Input/Output

The Stack (an example)

OxF3

Ox31

0x45

Now perform:
POP R5

<« SP

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

59

The Stack (an example)

Now perform:
POP R5

R5 now is set to the value
that is on the top of the

stack (OxF3) ...
(0xF3)«— sP
0x45

Andrew H. Fagg: Embedded Real- 60
Time Systems: Input/Output

The Stack (an example)

Ox31

0x45

Now perform:

POP R5
R5 now is set to the value
that is on the top of the
stack (OxF3) ... and the
stack pointer is

iIncremented
<+« SP

Andrew H. Fagg: Embedded Real- 61
Time Systems: Input/Output

The Stack (an example)

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)

(ox31)«— sP

0x45

Andrew H. Fagg: Embedded Real- 62
Time Systems: Input/Output

The Stack (an example)

0x45

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)
and the SP is incremented

<« SP

Andrew H. Fagg: Embedded Real- 63
Time Systems: Input/Output

The Stack

In addition to the temporary storage of
register values, the stack is also used to:

» Pass parameters to a function

o Store the return location for use after an
interrupt or a function call

 Store the value of the status register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

64

Stack Manipulation in the Mega8

In the Mega8 and with our gcc compiler:

« Stack manipulation is typically hidden from
us

 This is true for functions as well as
iInterrupt routines

Andrew H. Fagg: Embedded Real- 65
Time Systems: Input/Output

Last Time
* |/O by polling

— Can lead to wasted CPU time due to “busy
waiting”

— Can miss events if you don’t check for them
often enough

* Interrupts
— Temporarily stop what the processor is doing
— Execute a small “interrupt handler” function
— Return the processor to its original state and
keep executing as if nothing else has happened

Andrew H. Fagg: Embedded Real- 66
Time Systems: Input/Output

Last Time

Stack: location in memory for temporary
storage

« Save register states

« Save return location (so we know where to
come back after a function or an interrupt

» Pass function parameters

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

67

Today

* Interrupt handler example
— Dealing with large volumes of incoming data

« Hardware timers and associated interrupts

— Will allow us to precisely time the regular
execution of certain interrupt handlers

Andrew H. Fagg: Embedded Real- 68
Time Systems: Input/Output

Administrivia

* Project 3:

— Soft deadline for part #1 (encoder processing)
is due on Tuesday

* 4 Robots are working well now
— Left/right turning asymmetry has been fixed

Andrew H. Fagg: Embedded Real- 69
Time Systems: Input/Output

Back to Receiving Serial Data...

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();

<do something with the character>

}

<do something else while waiting>

With this solution, how long can “something else” take?

Andrew H. Fagg: Embedded Real- 70
Time Systems: Input/Output

Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

71

Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
» Let’s create a larger buffer...

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

72

Receliving Serial Data

Creating a larger buffer. This will be a

globally-defined data structure composed
of:

* N-byte memory space:
char buffer [BUF_SIZE];

* Integers that indicate the first element in
the buffer and the number of elements:

int front, nchars;

Andrew H. Fagg: Embedded Real- 73
Time Systems: Input/Output

Buffered Serial Data

Implementation:

* We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

* Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real- 74
Time Systems: Input/Output

Interrupt Handler

// Called when the UART receives a byte
SIGNAL (SIG _UART RECV) {
// Handle the character in the UART buffer

Andrew H. Fagg: Embedded Real- 75
Time Systems: Input/Output

Interrupt Handler

// Called when the UART receives a byte
SIGNAL (SIG _UART RECV) {
// Handle the character in the UART buffer

int ¢ = getchar();

if (nchars < BUF _SIZE) {
buffer|[(front+nchars) $BUF _SIZE] = c;

nchars += 1;

Andrew H. Fagg: Embedded Real- 76
Time Systems: Input/Output

Reading Out Characters

// Called by a “main” program

// Get the next character from the
circular buffer

int get_next_character () {

int c;

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

77

Reading Out Characters

// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character () {
int cj;
1f (nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
——nchars;

front = (front + 1)%BUF_SIZE;
return (c) ;

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

78

An Updated main()

int c;
while (1) {
do |

272727

twhile (?27?27?);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

79

An Updated main()

int c;
while (1) {
do {
c = get_next_character();
if(c !'= -1)

<do something with the character>
twhile(c !'= -1);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

80

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

81

Buffered Serial Data

Subtle issues:

* The reading side of the code must make
sure that it does not allow the buffer to
overflow
— But at least we have BUF_SIZE times more

time

 We have a shared data problem ...

Andrew H. Fagg: Embedded Real- 82
Time Systems: Input/Output

The Shared Data Problem

» Two independent segments of code that
could access the same data structure at
arbitrary times

 |[n our case, get _next_character() could be

interrupted while it is manipulating the
buffer

— This can be very bad

Andrew H. Fagg: Embedded Real- 83
Time Systems: Input/Output

Solving the Shared Data Problem

* There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

84

Solving the Shared Data Problem

There are a variety of techniques that are
available:

» (Clever coding
« Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

« Disabling interrupts

Andrew H. Fagg: Embedded Real- 85
Time Systems: Input/Output

Disabling Interrupts

 How can we modify get_next_character()?

* The it is important that the critical section be as
short as possible

Assume:
 serial_receive_enable(): enable interrupt flag

» serial_receive _disable(): clear (disable) interrupt
flag

Andrew H. Fagg: Embedded Real- 86
Time Systems: Input/Output

Modified get_next_character()

int get_next_character () {
int c;
serial receive_disable() ;
if (nchars == 0)
serial receive_enable();
return(-1); // Error

else {
// Pull out the next character

c = buffer[front];
——nchars;
front = (front + 1)3%BUF_SIZE;

serial receive_enable();

return (c) ;

} Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Initialization Detalls

main ()

{
nchars = 0;
front = 0;

// Enable UART receive interrupt

serlal receilive_ enable () ;

// Enable global interrups

sel();

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

88

Enabling/Disabling Interrupts

« Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

« But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

90

Last Time

Interrupts in practice
Serial data processing
Data buffering

Shared data problem

Andrew H. Fagg: Embedded Real-

Time Systems: Input/Output

91

Today

* Timers/counters
« Generating regular interrupts
» Direct Memory Access (DMA)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

92

Administrivia

» Should have part 1 of project 3
demonstrated today

 Homework 5 and project 2 grading done
for Thursday

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

93

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices. These can:

» Be used to count the number of events
that have occurred (either external or
internal)

 Act as a clock

 Trigger an interrupt after a specified
number of events

Andrew H. Fagg: Embedded Real- 94
Time Systems: Input/Output

Timer O

* Input source:
— Pin TO (PD4)

— System clock
 Potentially divided by a “prescaler”

* 8-bit counter

* When the counter turns over from OxFF to
0x0, an interrupt can be generated

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

95

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Heal-
Time Systems: Input/Output

Jb

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

 Clock input to Y0-bit counter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Heal-
Time Systems: Input/Output

v/

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Heal-
Time Systems: Input/Output

Y38

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit nter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Heal-
Time Systems: Input/Output

Iy

Timer O Implementation

clk,q [> 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

» Clock input to 10-bit counter
» Qutput bits: 3, 6, 8, and 10

— These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

100

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

L 4

To !} . 4
ization |}

MUX selects between 5 t++ vy i l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 101
Time Systems: Input/Output

Timer O Implementation

clk,o $ »> 10-BIT T/C PRESCALER
Clear
8 3
T 7 § &
o 2 b
PSR10 S
&
>
&
TO §TTTTTTTTTTTTTTTR ¢
— 1 Synch t T

MUX selects between
these different inputs _w cw

 Control bits determine
source

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

102

Timer O Implementation

clk,q & W e 10-BIT T/C PRESCALER
BIELR
& ! |
i -sakad ! S l
MUX selects between Yyvyy i

Cs00

these different inputs csor
* 000: No input

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 103
Time Systems: Input/Output

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

PSR10

MUX selects between TEETY i l
these different inputs 233?3\»\

* 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 104
Time Systems: Input/Output

Timer O Implementation

Y
w
4
=
—1
R
CK/8

MUX selects between
these different inputs

* 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 105
Time Systems: Input/Output

Timer O Implementation

MUX selects between
these different inputs o1

cs02

* 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 106
Time Systems: Input/Output

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

PSR10

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these l
different inputs cons /

° 1 10 Falllng edge Of pln TO TIMER/COUNTERD CLOCK SOURCE
Andrew H. Fagg: Embedded Real- 107

Time Systems: Input/Output

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

MUX selects between these
different inputs —
* 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 108
Time Systems: Input/Output

DATA BUS

Timer O

« TCNTO: 8-bit

TCCRr counter (a register)

¢ « TCCRO: control

Control Logic -.‘EE. reg |Ster

y

Timer/Counter

TCNTR

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

109

DATA BUS

Timer O

 Clock source from

TCCRn preViOUS slide

J,

Control Logic ck,,

y

Timer/Counter

TCNTR

&

= OxFF

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

110

DATA BUS

Timer O

 |ncrement counter
on every low-to-high
transition

Timer/Counter
TCNTn

Andrew H. Fagg: Embedded Real- 111
Time Systems: Input/Output

Timer 0 Example

Suppose:
« 16MHz clock
 Prescaler of 1024

« We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded Real- 112
Time Systems: Input/Output

Timer 0 Example

%
delay = 10247156 =9948 us =10 ms
16,000,000

Andrew H. Fagg: Embedded Real- 113
Time Systems: Input/Output

Timer 0 Code Example

timer0_config(TIMERO_PRE_1024); // Prescale by 1024
timer0_set(0); // Set the timer to O

// Do something else for a while
while(timerO_read() < 156) {

b

// Break out at ~10 ms

See Atmel FAQ for example code

Andrew H. Fagg: Embedded Real- 114
Time Systems: Input/Output

Timer 0 Example

Advantage over delay _ms():
» Can do other things while waiting

* Timing is much more precise

— We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real- 115
Time Systems: Input/Output

Timer 0 Example

Disadvantage:

» “something else” cannot take very much
time

What is the solution?

Andrew H. Fagg: Embedded Real- 116
Time Systems: Input/Output

Timer O Interrupt

What is the solution?
» Use interrupts!

* We can configure the timer to generate an
interrupt every time the timer’s counter
rolls over from OxFF to 0x00

Andrew H. Fagg: Embedded Real- 117
Time Systems: Input/Output

Timer 0 Example |l

Suppose:
« 16MHz clock
 Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real- 118
Time Systems: Input/Output

Timer 0 Example |l

K
interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real- 119
Time Systems: Input/Output

Timer 0 Example |l

How many counts do we need so that we
toggle the state of PBO every second?

COUNLS = 1000 ms =61.0352

16.384 ms

We will assume 61 Is close enough.

Andrew H. Fagg: Embedded Real- 120
Time Systems: Input/Output

Example |I: Interrupt Routine

SIGNAL(SIG_OVERFLOWO) {
++counter;
if(counter == 61) {
// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB *=1;
counter = 0;

See Atmel FAQ for example code

Andrew H. Fagg: Embedded Real- 121
Time Systems: Input/Output

Example Il: Initialization

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO _PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else
b

Andrew H. Fagg: Embedded Real- 122
Time Systems: Input/Output

Timer 0 with Interrupts

This solution is particularly nice:

* “something else” does not have to worry
about timing at all

— PBO state is altered asynchronously

* Note that we can still have the shared data
problem (but not in this example)

Andrew H. Fagg: Embedded Real- 123
Time Systems: Input/Output

Other Timers

Timer 1:
* 16 bit counter

imer 2:
e 8 bit counter

Andrew H. Fagg: Embedded Real- 124
Time Systems: Input/Output

Next Topic: Information Encoding

We have talked about various forms of
information encoding:

» Analog: use voltage to encode a value
« Parallel digital
« Serial digital

Andrew H. Fagg: Embedded Real- 125
Time Systems: Input/Output

Next Topic: Information Encoding

An alternative: pulse-width modulation
(PWM)

 Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real- 126
Time Systems: Input/Output

PWM Example:

RC Servo Motors

« 3 pins: power (red),
ground (black), and
command signal (white)

 Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real- 127
Time Systems: Input/Output

PWM Example

20 ms
- >~

- > >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

* 0.5 ms: 0 degrees

1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real- 128
Time Systems: Input/Output

RC Servo Motors

* |Internal potentiometer measures the
current orientation of the shaft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines

shaft velocity.
« Mechanical stops limit the range of motion

— These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded Real- 129
Time Systems: Input/Output

PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

130

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

* They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 131
Time Systems: Input/Output

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 132
Time Systems: Input/Output

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

« Again: they are linearly related (essentially)

* If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 133
Time Systems: Input/Output

Controlling LED Brightness

We need:
» To produce a periodic behavior, and

* A way to specity the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 134
Time Systems: Input/Output

Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter
 \When the counter is 0, turn the LED on

« When the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded Real- 135
Time Systems: Input/Output

Last Time

Interrupts

Timers

Generating regular interrupts
PWM control

Andrew H. Fagg: Embedded Real- 136
Time Systems: Input/Output

Today

* Interrupt subtleties
« DC motor control
» Direct Memory Access (DMA)

Andrew H. Fagg: Embedded Real- 137
Time Systems: Input/Output

Administrivia

* Project 3 due on Tuesday

* New Atmel programmers are on-line.

— See Atmel FAQ for details on how to use
them

— You will need a different adapter between the
programmer and your circuit (but your circuit
does not need to change)

» Schedule has been updated
— See readings for coming weeks

Andrew H. Fagg: Embedded Real- 138
Time Systems: Input/Output

Interrupt Challenge |: Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code in order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real- 139
Time Systems: Input/Output

Shared Data and Compiler
Optimizations

For example:
A=A + 1;
C =B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real- 140
Time Systems: Input/Output

Shared Data and Compiler
Optimizations

Now consider:

while (1) {
PORTB = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

141

Shared Data and Compiler
Optimizations
The compiler will assume that ‘A" never changes.
This will result in code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1) {
PORTB = R1;

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 142
Time Systems: Input/Output

Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

SIGNAL (SIG_OVERFLOWO) {
A = PIND;
}
* The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 143
Time Systems: Input/Output

Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location is not changing

* This is accomplished when we declare the
global variable:

volatile uint8 t A;

Andrew H. Fagg: Embedded Real- 144
Time Systems: Input/Output

Back to Our Interrupt
Implementation ...

volatile uilnt8 _t counter, duration;

SIGNAL (SIG_OVERFLOWO) {
++counter;
1f (counter == 0)
PORTB |= 1;
1f (counter >= duration)
PORTB &= ~1;

Andrew H. Fagg: Embedded Real- 145
Time Systems: Input/Output

Initialization Detalls

« Set up timer
* Enable interrupts

» Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real- 146
Time Systems: Input/Output

Initialization

int main(void) {
DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();

Andrew H. Fagg: Embedded Real- 147
Time Systems: Input/Output

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real- 148
Time Systems: Input/Output

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timer0 counter (8 bits) expires every 256
clock cycles

__ 256 _, 6 s
16000000
(assuming a 16MHz clock)

Time Systems: Input/Output

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real- 150
Time Systems: Input/Output

PWM Implementation

What is the period of the pulse?

» The 8-bit counter (of the interrupt) expires every
256 Interrupts

K
t = 2967256 =4.096 ms
16000000
Andrew H. Fagg: Embedded Real- 151

Time Systems: Input/Output

Doing “Something Else”

unsigned 1nt 1;

while (1) {
for(i = 0; 1 < 256; ++1)
duration = 1;

delay_ms (50) ;
} i
} i

Andrew H. Fagg: Embedded Real- 152
Time Systems: Input/Output

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

* Prescalar (1 ... 1024)
« Timer0 (256)
» Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real- 153
Time Systems: Input/Output

DC Motors

« Current (ideally) is
proportional to the torque
produced by the motor

* Direction of current flow
determines torque
direction

How can a digital input
control torque magnitude?

www.pcgadgets.com

Andrew H. Fagg: Embedded Real- 154
Time Systems: Input/Output

LEDs to DC Motors

How can a digital input
control torque magnitude?

« Use PWM!

How do we handle torque
direction?

www.pcgadgets.com

Andrew H. Fagg: Embedded Real- 155
Time Systems: Input/Output

LEDs to DC Motors

How do we handle torque
direction?

 +5V to north OV to south
e OV to north +5V to south

How would we implement
this?

www.pcgadgets.com

Andrew H. Fagg: Embedded Real- 156
Time Systems: Input/Output

DC Motor Control

28 27 26 25 24 23 22 21 20 19 18 17 16 15

One possibility... o PSP aND Avee PRI P
PC4 PC2 PCO AREF PB5 PB3 PBI1

« Connect motor
directly to the I/O pins

) Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1 PD3 VCC PB6 PD5S PD7

uuuuuuuuuuuuuu
1 2 3 4[5 9 10 11 12 13 14

Two directions:
« PD2:1;: PD3: 0
« PD2:0; PD3: 1

(°)

motor

Andrew H. Fagg: Embedded Real- 157
Time Systems: Input/Output

DC Motor Control

28 27 26 25 24 23 22 21 20 19 18 17 16 15

One possibility... o PSP aND Avee PRI P
PC4 PC2 PCO AREF PB5 PB3 PBI1

« Connect motor
directly to the I/O pins

) Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1 PD3 VCC PB6 PD5S PD7

uuuuuuuuuuuuuu
1 2 3 4[5 9 10 11 12 13 14

What is wrong with this
implementation?

(°)

motor

Andrew H. Fagg: Embedded Real- 158
Time Systems: Input/Output

DC Motor Control

What is wrong with this 28 27 26 25 24 23 22 21 20 19 18 17 16 15
INEEEEEEEEEEEEENEEEEEEEEEEn

implementation? PC5 PC3 PCl GND AVCC PB4 PB2

. PC4 PC2 PCO AREF PB5 PB3 PBI1

* QOur I/O pins can
source/sink at most 20)
mA Of Current PDO0 PD2 PD4 GND PB7 PD6 PB0

PC6 PD1 PD3 VCC PB6 PD5S PD7

Atmel Mega8

» This is not very much P r ST E TS S0 1T 0T T
when it comes to
motors...
How do we fix this? ©
motor
Andrew H. Fagg: Embedded Real- 159

Time Systems: Input/Output

Simple H-Bridge

+5V

|

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

160

Simple H-Bridge

What
happens J

with these w
inputs? 1 —wWWw»—{ 0
0 M W 1

7

Andrew H. Fagg: Embedded Real- 161
Time Systems: Input/Output

Simple H-Bridge

+5V

What
happens

with these w
inputs? 1 0

 Motor
turns In

one g 1
direction

Andrew H. Fagg: Embedded Real- 162
Time Systems: Input/Output

Simple H-Bridge

How about T]

these

inputs?) M w1
F@ﬁ
1 M . M 0

Andrew H. Fagg: Embedded Real- 163
Time Systems: Input/Output

Simple H-Bridge

+5V

What
happens

with these
inputs? 0 —ww»—{ 1

 Motor
turns In

the other 4 0
direction! W
Andrew H. Fagg: Embedded Real- 164
Time Systems: Input/Output

Simple H-Bridge

How about
these J

inputs? | w
1 0
1 M W 0

7

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Simple H-Bridge

+5V

What
happens

with these w
inputs? 1 0
* We short

power to @_'

ground - 0

bad

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Simple H-Bridge

+5V
How can we

prevent a

processor B—MW

from 1 0

accidentally

producing @_‘
i ?

this case* 1 M 0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Modified H-Bridge

+5V

We introduce a J

little logic to M
ensure the I

short never iz |
OCCurs <O>

I

s

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

168

Modified H-Bridge

+5V

What happens J

with this
input? 0— M

iz L)

s

I

s

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

169

Modified H-Bridge

+5V

What happens J
with this 0
input? 0— iz M

T

()

-
™)

s

Andrew H. Fagg: Embedded Real- 170
Time Systems: Input/Output

Modified H-Bridge

+5V

What happens

with this 0

input? 0—
 Motor turns

In one

direction

Andrew H. Fagg: Embedded Real- 171
Time Systems: Input/Output

Modified H-Bridge

How about this
input?

1

el

s

I

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

172

Modified H-Bridge

+5V

What happens J
with this 1
input? 1 iz M

0"

()

-
o

s

Andrew H. Fagg: Embedded Real- 173
Time Systems: Input/Output

Modified H-Bridge

+5V

How about this

input? 1
P 11— Elﬂvw—

 Motor turns 0
In the other

direction
0 | 1

Andrew H. Fagg: Embedded Real- 174
Time Systems: Input/Output

Modified H-Bridge

+5V

1 L
- . 0
This implementation

IS nice because we
only need one ’—V\W—H

direction bit of 0 1
control

 What are we
missing?

Andrew H. Fagg: Embedded Real- 175
Time Systems: Input/Output

Modified H-Bridge

+5V

What are we 1 |
missing? 11—

» Control of torque iz 0
magnitude

. Let’s introduce a W
second PWM input 0 1

What would this look
like?

Andrew H. Fagg: Embedded Real- 176
Time Systems: Input/Output

PWM and Direction Control

o

+5V

|

S

(0)

- —— MWW

n—
e

e

Andrew H. Fagg:
Time Systems

Embedded Real-
> Input/Output

177

PWM and Direction Control

+5V

|
g . > - :
What % K <O> A
happens }*—“WH: oA

with this 7
input?

Andrew H. Fagg: Embedded Real- 178
Time Systems: Input/Output

PWM and Direction Control

0
X

What
happens?

 No curreni
flow

i

B

+5V

|

(0)

agww%i

n—

B 0

e
0

e

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

179

PWM and Direction Control

+5V

|
;I(. j - :
What (o)
happens et o

?
NOW : —

Andrew H. Fagg: Embedded Real- 180
Time Systems: Input/Output

PWM and Direction Control

+5V

|

1 . j X - :
X X’
What - (o) '
happens X’
now? }a—W\/\Hi -
) ‘X, X
determines -
motor
direction
Andrew H. Fagg: Embedded Real- 181

Time Systems: Input/Output

PWM and Direction Control

JUUL

+5V

|

Direction

With the
PWM input,
we can
control the
magnitude
of torque

S

e

(0)

n—
e

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

182

Flow of Data in I/O

Back to our serial interrupt handler
example...

* How does the data flow through the
processor?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

183

Interrupt Handler

SIGNAL (SIG_UART RECV) {
// Handle the character in the UART buffer

int ¢ = getchar();

1if (nchars < BUF_SIZE) {
buffer|[(front+nchars) $BUF _SIZE] = c;

nchars += 1;

Andrew H. Fagg: Embedded Real- 184
Time Systems: Input/Output

Data Flow on Each Interrupt

Byte arrives at
serial device

Data Bus 8-bit

«

:

Flash
Program
Memory

il

e

Program
Counter

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

Status
and Control
Interrupt
32x8 —pr Unit
General s
Purpose bl SP|
Registrers v Unit
Watchdog
4 y =3 Timer
N/
ALU
— Analog
Comparator
*—®l /0 Module1
Data ;
/O Module 2
sram [TV ¢
i/O Module n
EEPROM 0
/O Lines -t
185

Data Flow on Each Interrupt

Data Bus 8-bit

Program Status
Flash - Ea o
u Program Counter and Control
nierrupt routine emory |
l Interrupt
> 32x8 p—i Unit
O a S y e Instruction General
Register Purpose SP|
. . Registrers Unit
INto a register :
Instruction Watchdog

Decoder - Timer
(=] =
4= ‘B
[73) w

l & £ Analog
Control Lines = pe. Comparator
s 5
=) o
@ =
= =
= £ i/O Module1
" Sfﬁiﬂ /O Module 2
i'O Module n
EEPROM B
I/0 Lines ot

Andrew H. Fagg: Embedded Real- 186
Time Systems: Input/Output

Data Flow on Each Interrupt

Data Bus 8-bit

«

Interrupt routine
then writes
byte out to
buffer in RAM

:

Flash
Program
Memory

Program
Counter

Status
and Control

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

32x8B
General
Purpose
Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Andrew H. Fagg: Embedded Real-

Time Systems: Input/Output

IO Module1

i/O Module 2

EEPROM

i/O Module n

1/O Lines

187

Flow of Data in I/O

With each transfer:

* The byte value moves from the device to a
register

* And then moves from the register to RAM

This is OK when we have very little data to
move

 But: when there is a lot of data, we can
waste a lot of CPU time in this double
transfer

Andrew H. Fagg: Embedded Real- 188
Time Systems: Input/Output

Moving a Lot of Data

Direct memory access:

» CPU gives control of the data bus to the
device itself

* Device generates the address and
read/write signals

* Once transfer is complete, CPU takes
control back

Andrew H. Fagg: Embedded Real- 189
Time Systems: Input/Output

Data Flow Duri
<

Device writes
data directly
iInto RAM

« Many bytes
are
transferred at
a time

ng DMA

Data Bus 8-bit

:

Flash B

Program

Program
Counter

Memory =

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Input/Output

Status
and Control -
Interrupt
32x8 Unit
General s
Purpose o SP|
Registrers o Unit
Watchdog
4 4 - Timer
N/
ALU
— Analog
Comparator
/O Modulet
Data ;
2 /O Module 2
SRAM : i
i/O Module n
EEPROM of
1/O Lines n
190

Data Flow During DMA

* This data flow technique is common in
video, audio, and disk transfers

» Enables the CPU to perform some
operations in parallel

* Note: the mega8 itself does not support
DMA (but your home computer does)

Andrew H. Fagg: Embedded Real- 191
Time Systems: Input/Output

Next Time

« Device communication
* Project 4

Andrew H. Fagg: Embedded Real- 192
Time Systems: Input/Output

