Project 3 Adjustments

« Part 1 now due: April 11t (one week)
— This is a “soft” deadline

 Part 2 now due: April 18" (two weeks)

(project 4 complexity will be adjusted
accordingly)

Also: see discussion on D2L about types
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Last Time

Digital to analog conversion

* Pulse-width modulation (PWM)

» Resistive networks

Analog to digital conversion

« Successive approximation

» Coding examples with the mega8

Project 3
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Today: Input/Output

» |/O via polling
« Serial interfaces
* |/O with interrupts
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Administrivia
 Homework 5 due today @5:00

* Project 2 demonstrations need to be
completed by Tueday @3:30
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Example: Stable Hovering
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Lessons Learned from Lab 2

* Timing of sensory and control actions can
be important

» Sensors and actuators are rarely ideal
— Must account for this in our code

» Debugging can be a long process
— Control the experiments
— Implement and test in stages

Andrew H. Fagg: Embedded Real-
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Input/Output Systems

Processor needs to communicate with other
devices:

* Receive signals from sensors
« Send commands to actuators
* Or both (e.g., disks, audio, video devices)
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/O Systems

Communication can happen in a variety of
ways:

» Binary parallel signal (e.g., the interface
that you used for your robot)

 Serial signals
* Analog

Andrew H. Fagg: Embedded Real-
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/O Systems

Many devices are operating independently
of the processor — except when
communication happens

» We say that these devices are acting
asynchronously of the processor

* The processor must have some way of
knowing that something has changed with
the device (e.g., that it is ready to send or
receive information)

Andrew H. Fagg: Embedded Real-
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An Example:
SICK Laser Range Finder

Laser is scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

Spatial resolution: ~.5
degrees, 1 cm

Can handle full 180 degrees
at 20 Hz
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/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {
x = PINB & 0x10;
twhile (x == 0);

y = PINC ..
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/0 By Polling

What is wrong with this approach?
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/O By Polling

What is wrong with this approach?

* In embedded systems, we are typically
managing many devices at once
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/0 By Polling

» We can potentially be waiting for a long
time before the state changes

— We call this busy waiting

* The processor is wasting time that could
be used to do other tasks

What is one way to solve this?
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/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>
}while (x == 0);
y = PINC ..
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Serial Communication

« Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real- 16
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Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

» Typically, each side has a clock to tell it
when to write/read a bit

* |[n some cases, the sender will also send a
clock signal (on a separate line)

* |In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real- 17
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Serial Communication

« Hardware implementations are very
common:

— Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

— Handles all of the bit-level manipulation

— You only have to interact with it on the byte
level

Andrew H. Fagg: Embedded Real- 18
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Mega8
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Mega8
UART

* Transmit pin
(PD1)
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Mega8
UART
* Transmit pin
(PD1)

 Transmit
shift register
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Mega8
UART

* Receive pin
(PDO)
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Mega8
UART
* Receive pin
(PDO)

* Receive
shift register
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Mega8 UART C Interface

ioinit () : Initialize the port

getchar () : receive a character

kbhit () : Is there a character in the buffer?
putchar () : put a character out to the port

See the Atmel FAQ from the main class web
page

Andrew H. Fagg: Embedded Real- 24
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Mega8 UART C Interface

printf () : formatted output
scanf () : formatted input

See the LibAvr documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real- 25
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Serial I/0O by Polling

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

Andrew H. Fagg: Embedded Real- 26
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/O By Polling: An Alternative

Polling works great ... but:

» We have to guarantee that our “something
else” does not take too long (otherwise,
we may miss the event)

» Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 27
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/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* We know the event is coming very soon
* We must respond to the event very quickly

(both are measured in nano- to micro-
seconds)

Andrew H. Fagg: Embedded Real- 28
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An Alternative: Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes an interrupt
handler (a small piece of code)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real- 29
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Some Sources of Interrupts
(Mega8)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
 Processor reset

« The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
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Interrupts

There are many possible interrupts
» How do we know which one has occurred?

» How does the processor respond to a
specific interrupt?

Andrew H. Fagg: Embedded Real- 31
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Interrupts

How do we know which interrupt has
occurred?

* The mega8 hardware identifies each
interrupt with a unique integer

How does the processor respond to a
specific interrupt?

* The processor stores an interrupt table in
program memory

Andrew H. Fagg: Embedded Real- 32
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Mega8 Interrupt Table Implementation

addressLabels Code

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He )

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 33
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Mega8 Interrupt Table Implementation

addressLabels Code

Address in
the program

memory

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He )

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 34
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Mega8 Interrupt Table Implementation

addressLabels Code

Comments

s000 rijmp RESET ; Reset Handler
s001 rijmp EXT_INTO ; IRQ0 Handler
s002 rjmp EXT_INT1 ; IRQ1 Handler
s0 rijmp TIM2_COMP ; TimerZ Compare Handler
s004 rjmp TIM2_OVF ; Timer2 Overflow Handler
5005 rjmp TIMI1_CAPT ; Timerl Capture Handler
Change s006 rijmp TIM1 COMEA ; Timerl Comparel Handler
program s007 rjmp TIM1_COMFR ; Timerl CompareB Handler
COunter tO s008 rjmp TIM1_OVF ; Timerl Overflow Handler
. 5009 rijmp TIMO_OVF ; Timer0 Overflow Handler
the |OCatIOn s00a rjmp SPI_STC ; SPI Transfer Complete Handler
identified by $00b rimp USART_RXC ; USART RX Complete Handler
“EXT INT-‘ »  500c rjmp USART_UDRE ; UDR Empty Handler
s00d rjmp USART_TXC ; USART TX Complete Handler
s00e rjmp ADC ; ADC Conversion Complete Handler
S00f rijmp EE_RDY ; EEPROM Ready Handler
s010 rjmp ANA_COMP ; Analog Comparator Handler
S011 rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 35
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Interrupt Example

Suppose we are executing the
“something else” code:

LDS R1 (A)<+— PC
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
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An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)
CP R2, R1 < PC
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
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An Example

An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1 «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 st regg Emoossos et

Time Systems: Input/Output
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An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1—»
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3 st regg Emoossos et

Time Systems: Input/Output

rimp EXT_INT1 «— PC
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An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
DSR2 (B)

» BRGE 3
LDS R3 (D \ remember this location
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
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An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) PC;:LDS R1 (G)
CP R2, Rl—» rjmp EXT_INTT LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 42
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An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 PC —»LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 43
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An Example
Execute the interrupt handler

EXT INT1:
LDS R1 (A)

DS R2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
DS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 44
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An Example
Execute the interrupt handler

EXT INTH:
=05 1A LDS R1 (G)
LDS R2 (B) o8 5 (1)
CP R2, R1
> BRGE 3 o _ ADDRI,R2
LDS R3 (D) -
ADD R3, R1 RET]

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 45
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An Example

Return from interrupt

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
oP R2, R LDS RS (1)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RET!

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 46
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An Example

Return from interrupt

EXT INT1:
DS R1 (A)
DS R2 (B) DS R1 (G)
cP R2, A1 LDS R5 (1

» BRGE 3 <— PC
DS R3 (D)\ -
ADD R3, R1 RET]
STS (D), R3  avrew i Fago: Embedcod Real .

Time Systems: Input/Output
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An Example

Continue execution with original

EXT INTH:
LDS R1 (A)

CP R2. R1 LDS R> (L)
SRGE 3 ADD R1. R2
DS R3 (D) «— pPC -

ADD R3, R1 RET

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 48
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An Example

Continue execution with original

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, R1ie— PC
STS (D)s R3 Andrew H. Fagg: Embedded Real- 49
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Interrupt Routines

» Generally a very small number of
instructions

— We want a quick response so the processor
can return to what it was originally doing

» Register use

— If the interrupt routine makes use of registers,
then it must restore their state before
returning

— We accomplish this through the use of a
stack

Andrew H. Fagg: Embedded Real- 50
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The Stack

A hardware-supported data structure
composed of:

* A block of memory

A stack pointer (SP) that indicates the
current top of the stack

Andrew H. Fagg: Embedded Real-
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The Stack (an example)

Ox45 «— SP

Andrew H. Fagg: Embedded Real-
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The Stack (an example)

Operation:
PUSH R1

(assume R1 contains 0x31)

Ox45 «— SP

Andrew H. Fagg: Embedded Real- 53
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The Stack (an example)

Operation:
PUSH R1

(assume R1 contains 0x31)

0x31| «— SP
0x45

Andrew H. Fagg: Embedded Real- 54
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The Stack (an example)

Now perform:
PUSH R5

(assume R5 contains 0xF3)

0x31| «— SP
0x45

Andrew H. Fagg: Embedded Real- 95
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The Stack (an example)

Now perform:
PUSH R5

(assume R5 contains 0xF3)

OxF3 <+ SP
Ox31
0x45

Andrew H. Fagg: Embedded Real- 56
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The Stack (an example)

The interrupt routine (or
function) now performs its

job ...
OxF3 <+ SP
Ox31
0x45

Andrew H. Fagg: Embedded Real- 57
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The Stack (an example)

OxF3

Ox31

0x45

The interrupt routine (or
function) now performs its
job (changing R1 and
R5)... and now restores
the state of R5 and R1 ...

<« SP

Andrew H. Fagg: Embedded Real- 58
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The Stack (an example)

OxF3

Ox31

0x45

Now perform:
POP R5

<« SP

Andrew H. Fagg: Embedded Real-
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The Stack (an example)

Now perform:
POP R5

R5 now is set to the value
that is on the top of the

stack (OxF3) ...
(0xF3)«— sP
0x45

Andrew H. Fagg: Embedded Real- 60
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The Stack (an example)

Ox31

0x45

Now perform:

POP R5
R5 now is set to the value
that is on the top of the
stack (OxF3) ... and the
stack pointer is

iIncremented
<+« SP

Andrew H. Fagg: Embedded Real- 61
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The Stack (an example)

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)

(ox31)«— sP

0x45

Andrew H. Fagg: Embedded Real- 62
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The Stack (an example)

0x45

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)
and the SP is incremented

<« SP

Andrew H. Fagg: Embedded Real- 63
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The Stack

In addition to the temporary storage of
register values, the stack is also used to:

» Pass parameters to a function

o Store the return location for use after an
interrupt or a function call

 Store the value of the status register

Andrew H. Fagg: Embedded Real-
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Stack Manipulation in the Mega8

In the Mega8 and with our gcc compiler:

« Stack manipulation is typically hidden from
us

 This is true for functions as well as
iInterrupt routines

Andrew H. Fagg: Embedded Real- 65
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Last Time
* |/O by polling

— Can lead to wasted CPU time due to “busy
waiting”

— Can miss events if you don’t check for them
often enough

* Interrupts
— Temporarily stop what the processor is doing
— Execute a small “interrupt handler” function
— Return the processor to its original state and
keep executing as if nothing else has happened

Andrew H. Fagg: Embedded Real- 66
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Last Time

Stack: location in memory for temporary
storage

« Save register states

« Save return location (so we know where to
come back after a function or an interrupt

» Pass function parameters

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Today

* Interrupt handler example
— Dealing with large volumes of incoming data

« Hardware timers and associated interrupts

— Will allow us to precisely time the regular
execution of certain interrupt handlers

Andrew H. Fagg: Embedded Real- 68
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Administrivia

* Project 3:

— Soft deadline for part #1 (encoder processing)
is due on Tuesday

* 4 Robots are working well now
— Left/right turning asymmetry has been fixed

Andrew H. Fagg: Embedded Real- 69
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Back to Receiving Serial Data...

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();

<do something with the character>

}

<do something else while waiting>

With this solution, how long can “something else” take?

Andrew H. Fagg: Embedded Real- 70
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Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
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Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
» Let’s create a larger buffer...

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Receliving Serial Data

Creating a larger buffer. This will be a

globally-defined data structure composed
of:

* N-byte memory space:
char buffer [BUF_SIZE];

* Integers that indicate the first element in
the buffer and the number of elements:

int front, nchars;

Andrew H. Fagg: Embedded Real- 73
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Buffered Serial Data

Implementation:

* We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

* Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real- 74
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Interrupt Handler

// Called when the UART receives a byte
SIGNAL (SIG _UART RECV) {
// Handle the character in the UART buffer

Andrew H. Fagg: Embedded Real- 75
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Interrupt Handler

// Called when the UART receives a byte
SIGNAL (SIG _UART RECV) {
// Handle the character in the UART buffer

int ¢ = getchar();

if (nchars < BUF _SIZE) {
buffer|[ (front+nchars) $BUF _SIZE] = c;

nchars += 1;

Andrew H. Fagg: Embedded Real- 76
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Reading Out Characters

// Called by a “main” program

// Get the next character from the
circular buffer

int get_next_character () {

int c;

Andrew H. Fagg: Embedded Real-
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Reading Out Characters

// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character () {
int cj;
1f (nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
——nchars;

front = (front + 1)%BUF_SIZE;
return (c) ;

Andrew H. Fagg: Embedded Real-
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An Updated main()

int c;
while (1) {
do |

272727

twhile (?27?27?);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
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An Updated main()

int c;
while (1) {
do {
c = get_next_character();
if(c !'= -1)

<do something with the character>
twhile(c !'= -1);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
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Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ....

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

81



Buffered Serial Data

Subtle issues:

* The reading side of the code must make
sure that it does not allow the buffer to
overflow
— But at least we have BUF_SIZE times more

time

 We have a shared data problem ...
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The Shared Data Problem

» Two independent segments of code that
could access the same data structure at
arbitrary times

 |[n our case, get _next_character() could be

interrupted while it is manipulating the
buffer

— This can be very bad
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Solving the Shared Data Problem

* There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
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Solving the Shared Data Problem

There are a variety of techniques that are
available:

» (Clever coding
« Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

« Disabling interrupts
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Disabling Interrupts

 How can we modify get_next_character()?

* The it is important that the critical section be as
short as possible

Assume:
 serial_receive_enable(): enable interrupt flag

» serial_receive _disable(): clear (disable) interrupt
flag
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Modified get_next_character()

int get_next_character () {
int c;
serial receive_disable() ;
if (nchars == 0)
serial receive_enable();
return(-1); // Error

else {
// Pull out the next character

c = buffer[front];
——nchars;
front = (front + 1)3%BUF_SIZE;

serial receive_enable();

return (c) ;

} Andrew H. Fagg: Embedded Real-
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Initialization Detalls

main ()

{
nchars = 0;
front = 0;

// Enable UART receive interrupt

serlal receilive_ enable () ;

// Enable global interrups

sel();

Andrew H. Fagg: Embedded Real-
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Enabling/Disabling Interrupts

« Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

« But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
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Last Time

Interrupts in practice
Serial data processing
Data buffering

Shared data problem

Andrew H. Fagg: Embedded Real-
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Today

* Timers/counters
« Generating regular interrupts
» Direct Memory Access (DMA)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

92



Administrivia

» Should have part 1 of project 3
demonstrated today

 Homework 5 and project 2 grading done
for Thursday
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Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices. These can:

» Be used to count the number of events
that have occurred (either external or
internal)

 Act as a clock

 Trigger an interrupt after a specified
number of events

Andrew H. Fagg: Embedded Real- 94
Time Systems: Input/Output



Timer O

* Input source:
— Pin TO (PD4)

— System clock
 Potentially divided by a “prescaler”

* 8-bit counter

* When the counter turns over from OxFF to
0x0, an interrupt can be generated

Andrew H. Fagg: Embedded Real-
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Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10
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Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

 Clock input to Y0-bit counter
* Qutput bits: 3, 6, 8, and 10
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Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10
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Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 g i N
G £ <
O o L)
PSR10 o

» Clock input to 10-bit nter
* Qutput bits: 3, 6, 8, and 10
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Timer O Implementation

clk,q [ > 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

» Clock input to 10-bit counter
» Qutput bits: 3, 6, 8, and 10

— These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
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Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

L 4

To !} . 4
ization |}

MUX selects between 5 t++ vy i l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer O Implementation

clk,o $ »> 10-BIT T/C PRESCALER
Clear
8 3
T 7 § &
o 2 b
PSR10 S
&
>
&
TO §TTTTTTTTTTTTTTTR ¢
— 1 Synch t T

MUX selects between
these different inputs _w cw

 Control bits determine
source

Andrew H. Fagg: Embedded Real-
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Timer O Implementation

clk,q & W e 10-BIT T/C PRESCALER
BIELR
& ! |
i -sakad ! S l
MUX selects between Yyvyy i

Cs00

these different inputs csor
* 000: No input

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

PSR10

MUX selects between TEETY i l
these different inputs 233?3\»\

* 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer O Implementation

Y
w
4
=
—1
R
CK/8

MUX selects between
these different inputs

* 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer O Implementation

MUX selects between
these different inputs o1

cs02

* 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

PSR10

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these l
different inputs cons /

° 1 10 Falllng edge Of pln TO TIMER/COUNTERD CLOCK SOURCE
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Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

MUX selects between these
different inputs —
* 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m
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DATA BUS

Timer O

« TCNTO: 8-bit

TCCRr counter (a register)

¢ « TCCRO: control

Control Logic -.‘EE. reg |Ster

y

Timer/Counter

TCNTR

Andrew H. Fagg: Embedded Real-
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DATA BUS

Timer O

 Clock source from

TCCRn preViOUS slide

J,

Control Logic ck,,

y

Timer/Counter

TCNTR

&

= OxFF
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DATA BUS

Timer O

 |ncrement counter
on every low-to-high
transition

Timer/Counter
TCNTn
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Timer 0 Example

Suppose:
« 16MHz clock
 Prescaler of 1024

« We walit for the timer to count from 0 to
156

How long does this take?
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Timer 0 Example

%
delay = 10247156 =9948 us =10 ms
16,000,000
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Timer 0 Code Example

timer0_config(TIMERO_PRE_1024); // Prescale by 1024
timer0_set(0); // Set the timer to O

// Do something else for a while
while(timerO_read() < 156) {

b

// Break out at ~10 ms

See Atmel FAQ for example code

Andrew H. Fagg: Embedded Real- 114
Time Systems: Input/Output



Timer 0 Example

Advantage over delay _ms():
» Can do other things while waiting

* Timing is much more precise

— We no longer rely on a specific number of
instructions to be executed
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Timer 0 Example

Disadvantage:

» “something else” cannot take very much
time

What is the solution?
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Timer O Interrupt

What is the solution?
» Use interrupts!

* We can configure the timer to generate an
interrupt every time the timer’s counter
rolls over from OxFF to 0x00
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Timer 0 Example |l

Suppose:
« 16MHz clock
 Prescaler of 1024

How often is the interrupt generated?
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Time Systems: Input/Output



Timer 0 Example |l

K
interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?
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Timer 0 Example |l

How many counts do we need so that we
toggle the state of PBO every second?

COUNLS = 1000 ms =61.0352

16.384 ms

We will assume 61 Is close enough.
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Example |I: Interrupt Routine

SIGNAL(SIG_OVERFLOWO) {
++counter;
if(counter == 61) {
// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB *=1;
counter = 0;

See Atmel FAQ for example code
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Example Il: Initialization

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO _PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else
b
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Timer 0 with Interrupts

This solution is particularly nice:

* “something else” does not have to worry
about timing at all

— PBO state is altered asynchronously

* Note that we can still have the shared data
problem (but not in this example)
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Other Timers

Timer 1:
* 16 bit counter

imer 2:
e 8 bit counter

Andrew H. Fagg: Embedded Real- 124
Time Systems: Input/Output



Next Topic: Information Encoding

We have talked about various forms of
information encoding:

» Analog: use voltage to encode a value
« Parallel digital
« Serial digital
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Next Topic: Information Encoding

An alternative: pulse-width modulation
(PWM)

 Information is encoded in the time
between the rising and falling edge of a
pulse
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PWM Example:

RC Servo Motors

« 3 pins: power (red),
ground (black), and
command signal (white)

 Signal pin expects a
PWM signal
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PWM Example

20 ms
- >~

- > >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

* 0.5 ms: 0 degrees

1.5 ms: 180 degrees
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RC Servo Motors

* |Internal potentiometer measures the
current orientation of the shaft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines

shaft velocity.
« Mechanical stops limit the range of motion

— These stops can be removed for unlimited

rotation
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PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
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Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

* They are linearly related (essentially)
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Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?
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Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

« Again: they are linearly related (essentially)

* If the period is short enough, then the human
eye will not be able to detect the flashes
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Controlling LED Brightness

We need:
» To produce a periodic behavior, and

* A way to specity the pulse width (or the
duty cycle)

How do we implement this in code?
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Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter
 \When the counter is 0, turn the LED on

« When the counter reaches some
“duration”, turn the LED off
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Last Time

Interrupts

Timers

Generating regular interrupts
PWM control
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Today

* Interrupt subtleties
« DC motor control
» Direct Memory Access (DMA)
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Administrivia

* Project 3 due on Tuesday

* New Atmel programmers are on-line.

— See Atmel FAQ for details on how to use
them

— You will need a different adapter between the
programmer and your circuit (but your circuit
does not need to change)

» Schedule has been updated
— See readings for coming weeks
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Interrupt Challenge |: Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code in order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data
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Shared Data and Compiler
Optimizations

For example:
A=A + 1;
C =B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice
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Shared Data and Compiler
Optimizations

Now consider:

while (1) {
PORTB = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
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Shared Data and Compiler
Optimizations
The compiler will assume that ‘A" never changes.
This will result in code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1) {
PORTB = R1;

The compiler only fetches A from memory once!
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Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

SIGNAL (SIG_OVERFLOWO) {
A = PIND;
}
* The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this
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Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location is not changing

* This is accomplished when we declare the
global variable:

volatile uint8 t A;
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Back to Our Interrupt
Implementation ...

volatile uilnt8 _t counter, duration;

SIGNAL (SIG_OVERFLOWO) {
++counter;
1f (counter == 0)
PORTB |= 1;
1f (counter >= duration)
PORTB &= ~1;
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Initialization Detalls

« Set up timer
* Enable interrupts

» Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?
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Initialization

int main(void) {
DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();
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PWM Implementation

What is the resolution (how long is one
increment of “duration”)?
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PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timer0 counter (8 bits) expires every 256
clock cycles

__ 256 _, 6 s
16000000
(assuming a 16MHz clock)
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PWM Implementation

What is the period of the pulse?
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PWM Implementation

What is the period of the pulse?

» The 8-bit counter (of the interrupt) expires every
256 Interrupts

K
t = 2967256 =4.096 ms
16000000
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Doing “Something Else”

unsigned 1nt 1;

while (1) {
for(i = 0; 1 < 256; ++1)
duration = 1;

delay_ms (50) ;
} i
} i
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Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

* Prescalar (1 ... 1024)
« Timer0 (256)
» Counter within an interrupt routine (any)

Each counter implements a frequency
division
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DC Motors

« Current (ideally) is
proportional to the torque
produced by the motor

* Direction of current flow
determines torque
direction

How can a digital input
control torque magnitude?

www.pcgadgets.com
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LEDs to DC Motors

How can a digital input
control torque magnitude?

« Use PWM!

How do we handle torque
direction?

www.pcgadgets.com
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LEDs to DC Motors

How do we handle torque
direction?

 +5V to north OV to south
e OV to north +5V to south

How would we implement
this?

www.pcgadgets.com
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DC Motor Control

28 27 26 25 24 23 22 21 20 19 18 17 16 15

One possibility... o PSP aND Avee PRI P
PC4 PC2 PCO AREF PB5 PB3 PBI1

« Connect motor
directly to the I/O pins

) Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1 PD3 VCC PB6 PD5S PD7

uuuuuuuuuuuuuu
1 2 3 4[5 9 10 11 12 13 14

Two directions:
« PD2:1;: PD3: 0
« PD2:0; PD3: 1

(°)

motor
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DC Motor Control

28 27 26 25 24 23 22 21 20 19 18 17 16 15

One possibility... o PSP aND Avee PRI P
PC4 PC2 PCO AREF PB5 PB3 PBI1

« Connect motor
directly to the I/O pins

) Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1 PD3 VCC PB6 PD5S PD7

uuuuuuuuuuuuuu
1 2 3 4[5 9 10 11 12 13 14

What is wrong with this
implementation?

(°)

motor
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DC Motor Control

What is wrong with this 28 27 26 25 24 23 22 21 20 19 18 17 16 15
INEEEEEEEEEEEEENEEEEEEEEEEn

implementation? PC5 PC3 PCl GND AVCC PB4 PB2

. PC4 PC2 PCO AREF PB5 PB3 PBI1

* QOur I/O pins can
source/sink at most 20 )
mA Of Current PDO0 PD2 PD4 GND PB7 PD6 PB0

PC6 PD1 PD3 VCC PB6 PD5S PD7

Atmel Mega8

» This is not very much P r ST E TS S0 1T 0T T
when it comes to
motors...
How do we fix this? ©
motor
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Simple H-Bridge

+5V

|
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Simple H-Bridge

What
happens J

with these w
inputs? 1 —wWWw»—{ 0
0 M W 1

7
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Simple H-Bridge

+5V

What
happens

with these w
inputs? 1 0

 Motor
turns In

one g 1
direction
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Simple H-Bridge

How about T]

these

inputs? ) M w1
F@ﬁ
1 M . M 0
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Simple H-Bridge

+5V

What
happens

with these
inputs? 0 —ww»—{ 1

 Motor
turns In

the other 4 0
direction! W
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Simple H-Bridge

How about
these J

inputs? | w
1 0
1 M W 0

7
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Simple H-Bridge

+5V

What
happens

with these w
inputs? 1 0
* We short

power to @_'

ground - 0

bad
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Simple H-Bridge

+5V
How can we

prevent a

processor B—MW

from 1 0

accidentally

producing @_‘
i ?

this case* 1 M 0
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Modified H-Bridge

+5V

We introduce a J

little logic to M
ensure the I

short never iz |
OCCurs <O>

I

s

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

168



Modified H-Bridge

+5V

What happens J

with this
input? 0— M

iz L)

s

I

s
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Modified H-Bridge

+5V

What happens J
with this 0
input? 0— iz M

T

()

-
™)

s
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Modified H-Bridge

+5V

What happens

with this 0

input? 0—
 Motor turns

In one

direction
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Modified H-Bridge

How about this
input?

1

el

s

I
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Modified H-Bridge

+5V

What happens J
with this 1
input? 1 iz M

0"

()

-
o

s
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Modified H-Bridge

+5V

How about this

input? 1
P 11— Elﬂvw—

 Motor turns 0
In the other

direction
0 | 1

Andrew H. Fagg: Embedded Real- 174
Time Systems: Input/Output



Modified H-Bridge

+5V

1 L
- . 0
This implementation

IS nice because we
only need one ’—V\W—H

direction bit of 0 1
control

 What are we
missing?
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Modified H-Bridge

+5V

What are we 1 |
missing? 11—

» Control of torque iz 0
magnitude

. Let’s introduce a W
second PWM input 0 1

What would this look
like?
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PWM and Direction Control

o

+5V

|

S

(0)

- —— MWW

n—
e

e
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PWM and Direction Control

+5V

|
g . > - :
What % K <O> A
happens }*—“WH: oA

with this 7
input?
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PWM and Direction Control

0
X

What
happens?

 No curreni
flow

i

B

+5V

|

(0)

agww%i

n—

B 0

e
0

e
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PWM and Direction Control

+5V

|
;I( . j - :
What (o)
happens et o

?
NOW : —
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PWM and Direction Control

+5V

|

1 . j X - :
X X’
What - (o) '
happens X’
now? }a—W\/\Hi -
) ‘X, X
determines -
motor
direction
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PWM and Direction Control

JUUL

+5V

|

Direction

With the
PWM input,
we can
control the
magnitude
of torque

S

e

(0)

n—
e
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Flow of Data in I/O

Back to our serial interrupt handler
example...

* How does the data flow through the
processor?
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Interrupt Handler

SIGNAL (SIG_UART RECV) {
// Handle the character in the UART buffer

int ¢ = getchar();

1if (nchars < BUF_SIZE) {
buffer|[ (front+nchars) $BUF _SIZE] = c;

nchars += 1;
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Data Flow on Each Interrupt
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Data Flow on Each Interrupt
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Data Flow on Each Interrupt

Data Bus 8-bit

«
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Flow of Data in I/O

With each transfer:

* The byte value moves from the device to a
register

* And then moves from the register to RAM

This is OK when we have very little data to
move

 But: when there is a lot of data, we can
waste a lot of CPU time in this double
transfer
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Moving a Lot of Data

Direct memory access:

» CPU gives control of the data bus to the
device itself

* Device generates the address and
read/write signals

* Once transfer is complete, CPU takes
control back
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Data Flow Duri
<
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Data Flow During DMA

* This data flow technique is common in
video, audio, and disk transfers

» Enables the CPU to perform some
operations in parallel

* Note: the mega8 itself does not support
DMA (but your home computer does)
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Next Time

« Device communication
* Project 4
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