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Project 3 Adjustments

• Part 1 now due: April 11th (one week)
– This is a “soft” deadline

• Part 2 now due: April 18th (two weeks)
(project 4 complexity will be adjusted 

accordingly)

Also: see discussion on D2L about types
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Last Time

Digital to analog conversion
• Pulse-width modulation (PWM)
• Resistive networks
Analog to digital conversion
• Successive approximation
• Coding examples with the mega8
Project 3



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

3

Today: Input/Output

• I/O via polling
• Serial interfaces
• I/O with interrupts
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Administrivia

• Homework 5 due today @5:00

• Project 2 demonstrations need to be 
completed by Tueday @3:30
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Example: Stable Hovering
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Lessons Learned from Lab 2

• Timing of sensory and control actions can 
be important

• Sensors and actuators are rarely ideal
– Must account for this in our code

• Debugging can be a long process
– Control the experiments
– Implement and test in stages
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Input/Output Systems

Processor needs to communicate with other 
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)
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I/O Systems

Communication can happen in a variety of 
ways:

• Binary parallel signal (e.g., the interface 
that you used for your robot)

• Serial signals 
• Analog
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I/O Systems
Many devices are operating independently 

of the processor – except when 
communication happens

• We say that these devices are acting 
asynchronously of the processor

• The processor must have some way of 
knowing that something has changed with 
the device (e.g., that it is ready to send or 
receive information)
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An Example: 
SICK Laser Range Finder

• Laser is scanned 
horizontally

• Using phase information, 
can infer the distance to the 
nearest obstacle (within a 
very narrow region)

• Spatial resolution: ~.5 
degrees, 1 cm

• Can handle full 180 degrees 
at 20 Hz
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I/O By Polling

One possible approach: the processor 
continually checks the state of the device:

do {

x = PINB & 0x10;

}while(x == 0);

y = PINC …
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I/O By Polling

What is wrong with this approach?
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I/O By Polling

What is wrong with this approach?
• In embedded systems, we are typically 

managing many devices at once
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I/O By Polling

• We can potentially be waiting for a long 
time before the state changes
– We call this busy waiting

• The processor is wasting time that could 
be used to do other tasks

What is one way to solve this? 
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I/O By Polling: An Alternative

Alternative: do something while we are 
waiting

do {

x = PINB & 0x10;

<go do something else>

}while(x == 0);

y = PINC …
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Serial Communication
• Communicate a set of bytes using a single 

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state 
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.
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Serial Communication
The sender and receiver must have some 

way of agreeing on when a specific bit is 
being sent

• Typically, each side has a clock to tell it 
when to write/read a bit

• In some cases, the sender will also send a 
clock signal (on a separate line)

• In other cases, the sender/receiver will first 
synchronize their clocks before transfer 
begins
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Serial Communication

• Hardware implementations are very 
common:
– Our mega 8 has a Universal, Asynchronous 

serial Receiver/Transmitter (UART)
– Handles all of the bit-level manipulation
– You only have to interact with it on the byte 

level
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Mega8 
UART
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Mega8 
UART

• Transmit pin 
(PD1)
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Mega8 
UART

• Transmit pin 
(PD1)

• Transmit 
shift register
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Mega8 
UART

• Receive pin 
(PD0)
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Mega8 
UART

• Receive pin 
(PD0)

• Receive 
shift register
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Mega8 UART C Interface

ioinit(): initialize the port
getchar(): receive a character
kbhit(): is there a character in the buffer?
putchar(): put a character out to the port 

See the Atmel FAQ from the main class web 
page
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Mega8 UART C Interface

printf(): formatted output
scanf(): formatted input

See the LibAvr documentation or the AVR C 
textbook
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Serial I/O by Polling
int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}
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I/O By Polling: An Alternative

Polling works great … but:
• We have to guarantee that our “something 

else” does not take too long (otherwise, 
we may miss the event) 

• Depending on the device, “too long” may 
be very short
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I/O by Polling

In practice, we typically reserve this polling 
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are measured in nano- to micro-
seconds) 
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An Alternative: Interrupts

• Hardware mechanism that allows some 
event to temporarily interrupt an ongoing 
task

• The processor then executes an interrupt 
handler (a small piece of code)

• Execution then continues with the original 
program
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Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter 

completes its conversion
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Interrupts

There are many possible interrupts 
• How do we know which one has occurred?
• How does the processor respond to a 

specific interrupt?
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Interrupts
How do we know which interrupt has 

occurred?
• The mega8 hardware identifies each 

interrupt with a unique integer

How does the processor respond to a 
specific interrupt?

• The processor stores an interrupt table in 
program memory
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Mega8 Interrupt Table Implementation
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Mega8 Interrupt Table Implementation

Address in 
the program 
memory
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Mega8 Interrupt Table Implementation

Change 
program 
counter to 
the location 
identified by 
“EXT_INT1”
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Interrupt Example
Suppose we are executing the 

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
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An Example
Suppose we are executing the 

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

38

An Example
Suppose we are executing the 

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
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An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
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An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

41

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1

remember this location
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
rjmp EXT_INT1

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC
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An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC
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An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC
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Interrupt Routines
• Generally a very small number of 

instructions
– We want a quick response so the processor 

can return to what it was originally doing
• Register use

– If the interrupt routine makes use of registers, 
then it must restore their state before 
returning

– We accomplish this through the use of a 
stack
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The Stack

A hardware-supported data structure 
composed of:

• A block of memory
• A stack pointer (SP) that indicates the 

current top of the stack



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

52

The Stack (an example)

0x45 SP
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The Stack (an example)

0x45 SP

Operation:
PUSH R1

(assume R1 contains 0x31)
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The Stack (an example)

0x45
SP0x31

Operation:
PUSH R1

(assume R1 contains 0x31)



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

55

The Stack (an example)

0x45
SP0x31

Now perform:
PUSH R5

(assume R5 contains 0xF3)
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The Stack (an example)

0x45

SP
0x31

Now perform:
PUSH R5

(assume R5 contains 0xF3)

0xF3
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The Stack (an example)

0x45

SP
0x31

The interrupt routine (or 
function) now performs its 
job …

0xF3
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The Stack (an example)

0x45

SP
0x31

The interrupt routine (or 
function) now performs its 
job (changing R1 and 
R5)… and now restores 
the state of R5 and R1 …

0xF3
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The Stack (an example)

0x45

SP
0x31

Now perform:
POP R5

0xF3
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The Stack (an example)

0x45

SP
0x31

Now perform:
POP R5

R5 now is set to the value 
that is on the top of the 
stack (0xF3) …

0xF3
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The Stack (an example)

0x45
SP0x31

Now perform:
POP R5

R5 now is set to the value 
that is on the top of the 
stack (0xF3) … and the 
stack pointer is 
incremented
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The Stack (an example)

0x45
SP0x31

Now perform:
POP R1

R1 receives the value on 
the top of the stack (0x31)
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The Stack (an example)

0x45 SP

Now perform:
POP R1

R1 receives the value on 
the top of the stack (0x31) 
and the SP is incremented
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The Stack

In addition to the temporary storage of 
register values, the stack is also used to:

• Pass parameters to a function
• Store the return location for use after an 

interrupt or a function call
• Store the value of the status register
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Stack Manipulation in the Mega8

In the Mega8 and with our gcc compiler:
• Stack manipulation is typically hidden from 

us
• This is true for functions as well as 

interrupt routines
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Last Time
• I/O by polling

– Can lead to wasted CPU time due to “busy 
waiting”

– Can miss events if you don’t check for them 
often enough

• Interrupts
– Temporarily stop what the processor is doing
– Execute a small “interrupt handler” function
– Return the processor to its original state and 

keep executing as if nothing else has happened
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Last Time
Stack: location in memory for temporary 

storage
• Save register states
• Save return location (so we know where to 

come back after a function or an interrupt
• Pass function parameters
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Today

• Interrupt handler example
– Dealing with large volumes of incoming data

• Hardware timers and associated interrupts
– Will allow us to precisely time the regular 

execution of certain interrupt handlers



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

69

Administrivia

• Project 3:
– Soft deadline for part #1 (encoder processing) 

is due on Tuesday

• 4 Robots are working well now
– Left/right turning asymmetry has been fixed
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Back to Receiving Serial Data…

With this solution, how long can “something else” take?

int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}
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Receiving Serial Data

How can we allow the “something else” to 
take a longer period of time?
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Receiving Serial Data

How can we allow the “something else” to 
take a longer period of time?

• The UART implements a 1-byte buffer
• Let’s create a larger buffer…
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Receiving Serial Data

Creating a larger buffer.  This will be a 
globally-defined data structure composed 
of:

• N-byte memory space:
char buffer[BUF_SIZE];

• Integers that indicate the first element in 
the buffer and the number of elements:

int front, nchars;
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Buffered Serial Data

Implementation:
• We will use an interrupt routine to transfer 

characters from the UART to the buffer as 
they become available

• Then, our main() function can remove the 
characters from the buffer
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Interrupt Handler
// Called when the UART receives a byte

SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

}

}
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Interrupt Handler
// Called when the UART receives a byte

SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

int c = getchar();

if(nchars < BUF_SIZE) {

buffer[(front+nchars)%BUF_SIZE] = c;

nchars += 1;

}

}
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Reading Out Characters

// Called by a “main” program

// Get the next character from the 
circular buffer

int get_next_character() {

int c;

}

}
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Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

int c;
if(nchars == 0) 

return(-1); // Error
else {

// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;
front = (front + 1)%BUF_SIZE;
return(c);

}
}
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An Updated main()
int c;

while(1) {

do {

????

}while(???);

<do something else while waiting>

}
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An Updated main()
int c;

while(1) {

do {

c = get_next_character();

if(c != -1) 

<do something with the character>

}while(c != -1);

<do something else while waiting>

}
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Buffered Serial Data

This implementation captures the essence 
of what we want, but there are some 
subtle things that we must handle ….
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Buffered Serial Data

Subtle issues:
• The reading side of the code must make 

sure that it does not allow the buffer to 
overflow
– But at least we have BUF_SIZE times more 

time

• We have a shared data problem …
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The Shared Data Problem

• Two independent segments of code that 
could access the same data structure at 
arbitrary times 

• In our case, get_next_character() could be 
interrupted while it is manipulating the 
buffer
– This can be very bad 
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Solving the Shared Data Problem

• There are segments of code that we want 
to execute without being interrupted

• We call these code segments critical 
sections
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Solving the Shared Data Problem

There are a variety of techniques that are 
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts
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Disabling Interrupts

• How can we modify get_next_character()?

• The it is important that the critical section be as 
short as possible

Assume:
• serial_receive_enable(): enable interrupt flag
• serial_receive_disable(): clear (disable) interrupt 

flag
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Modified get_next_character()
int get_next_character() {

int c;

serial_receive_disable();

if(nchars == 0) 

serial_receive_enable();
return(-1); // Error

else {

// Pull out the next character

c = buffer[front];

--nchars;

front = (front + 1)%BUF_SIZE;

serial_receive_enable();
return(c);

}

}
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Initialization Details
main() 

{

nchars = 0;

front = 0;

// Enable UART receive interrupt

serial_receive_enable();

// Enable global interrups

sei();

:
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Enabling/Disabling Interrupts

• Enabling/disabling interrupts allows us to 
ensure that a specific section of code (the 
critical section) cannot be interrupted
– This allows for safe access to shared 

variables

• But: must not disable interrupts for a very 
long time
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Last Time

• Interrupts in practice
• Serial data processing 
• Data buffering
• Shared data problem
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Today

• Timers/counters
• Generating regular interrupts
• Direct Memory Access (DMA)
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Administrivia

• Should have part 1 of project 3 
demonstrated today

• Homework 5 and project 2 grading done 
for Thursday
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Counter/Timers in the Mega8

The mega8 incorporates three counter/timer 
devices.  These can:

• Be used to count the number of events 
that have occurred (either external or 
internal)

• Act as a clock
• Trigger an interrupt after a specified 

number of events
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Timer 0

• Input source:
– Pin T0 (PD4)
– System clock 

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to 

0x0, an interrupt can be generated
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Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3,  6,  8, and 10



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

97

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3,  6,  8, and 10
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Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3,  6,  8, and 10
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Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3,  6,  8, and 10
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Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3,  6,  8, and 10

– These serve to divide the clock by the 
specified number of counts
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Timer 0 Implementation

MUX selects between 
these different inputs
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Timer 0 Implementation

MUX selects between 
these different inputs

• Control bits determine 
source
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Timer 0 Implementation

MUX selects between 
these different inputs

• 000: No input
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Timer 0 Implementation

MUX selects between 
these different inputs

• 001: System clock
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Timer 0 Implementation

MUX selects between 
these different inputs

• 010: System clock div 8
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Timer 0 Implementation

MUX selects between 
these different inputs

• 011: System clock div 64



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

107

Timer 0 Implementation

MUX selects between these 
different inputs

• 110: Falling edge of pin T0
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Timer 0 Implementation

MUX selects between these 
different inputs

• 111: Rising edge of pin T0
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Timer 0

• TCNT0: 8-bit 
counter (a register)

• TCCR0: control 
register
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Timer 0

• Clock source from 
previous slide
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Timer 0

• Increment counter 
on every low-to-high 
transition
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Timer 0 Example

Suppose:
• 16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to 

156

How long does this take?
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Timer 0 Example

mssdelay 109948
000,000,16
156*1024 ≈== µ
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Timer 0 Code Example
timer0_config(TIMER0_PRE_1024);   // Prescale by 1024

timer0_set(0);       // Set the timer to 0

// Do something else for a while
while(timer0_read() < 156) {
};

// Break out at ~10 ms

See Atmel FAQ for example code
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Timer 0 Example

Advantage over delay_ms(): 
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of 
instructions to be executed
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Timer 0 Example

Disadvantage: 
• “something else” cannot take very much 

time

What is the solution?



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

117

Timer 0 Interrupt

What is the solution?
• Use interrupts!
• We can configure the timer to generate an 

interrupt every time the timer’s counter 
rolls over from 0xFF to 0x00
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Timer 0 Example II

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?
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Timer 0 Example II

msinterval 384.16
000,000,16
256*1024 ==

How many counts do we need so that we 
toggle the state of PB0 every second?
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Timer 0 Example II

0352.61
384.16

1000 ==
ms

ms
counts

How many counts do we need so that we 
toggle the state of PB0 every second?

We will assume 61 is close enough.
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Example II: Interrupt Routine
SIGNAL(SIG_OVERFLOW0) {

++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
//  This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel FAQ for example code
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Example II: Initialization
// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts 
sei();

while(1) {
// Do something else

};
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Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry 

about timing at all
– PB0 state is altered asynchronously

• Note that we can still have the shared data 
problem (but not in this example)
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Other Timers

Timer 1: 
• 16 bit counter

Timer 2:
• 8 bit counter
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Next Topic: Information Encoding

We have talked about various forms of 
information encoding:

• Analog: use voltage to encode a value
• Parallel digital
• Serial digital
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Next Topic: Information Encoding

An alternative: pulse-width modulation 
(PWM)

• Information is encoded in the time 
between the rising and falling edge of a 
pulse
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PWM Example:

RC Servo Motors
• 3 pins: power (red), 

ground (black), and 
command signal (white)

• Signal pin expects a 
PWM signal
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PWM Example

Internal circuit translates pulse width into a goal 
position:

• 0.5 ms: 0 degrees
• 1.5 ms: 180 degrees
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RC Servo Motors

• Internal potentiometer measures the 
current orientation of the shaft

• Uses a Position Servo Controller: the 
difference between current and 
commanded shaft position determines 
shaft velocity. 

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited 

rotation
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PWM Example II: 
Controlling LED Brightness

What is the relationship of current flow 
through an LED and the rate of photon 
emission?
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Controlling LED Brightness

What is the relationship of current flow 
through an LED and the rate of photon 
emission?

• They are linearly related (essentially)
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Controlling LED Brightness

Suppose we pulse an LED for a given period 
of time with a digital signal: what is the 
relationship between pulse width and 
number of photons emitted?
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Controlling LED Brightness
Suppose we pulse an LED for a given period of 

time with a digital signal: what is the relationship 
between pulse width and number of photons 
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human 
eye will not be able to detect the flashes
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Controlling LED Brightness

We need:
• To produce a periodic behavior, and 
• A way to specify the pulse width (or the 

duty cycle)

How do we implement this in code?
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Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit 

counter
• When the counter is 0, turn the LED on
• When the counter reaches some 

“duration”, turn the LED off
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Last Time

• Interrupts
• Timers
• Generating regular interrupts
• PWM control
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Today

• Interrupt subtleties
• DC motor control
• Direct Memory Access (DMA)
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Administrivia

• Project 3 due on Tuesday
• New Atmel programmers are on-line.

– See Atmel FAQ for details on how to use 
them

– You will need a different adapter between the 
programmer and your circuit (but your circuit 
does not need to change)

• Schedule has been updated
– See readings for coming weeks
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Interrupt Challenge I: Shared Data 
and Compiler Optimizations

• Compilers (including ours) will often 
optimize code in order to minimize 
execution time

• These optimizations often pose no 
problems, but can be problematic in the 
face of interrupts and shared data
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Shared Data and Compiler 
Optimizations

For example:
A = A + 1;

C = B * A

Will result in ‘A’ being fetched from memory 
once (into a general-purpose register) –
even though ‘A’ is used twice
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Shared Data and Compiler 
Optimizations

Now consider:

while(1) {

PORTB = A;

}

What does the compiler do with this?
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Shared Data and Compiler 
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A;  // Fetch value of A into register 1

while(1) {

PORTB = R1;

}

The compiler only fetches A from memory once!
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Shared Data and Compiler 
Optimizations

This optimization is generally fine – but 
consider the following interrupt routine:

SIGNAL(SIG_OVERFLOW0){

A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this
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Shared Data and Compiler 
Optimizations

The fix: the programmer must tell the 
compiler that it is not allowed to assume 
that a memory location is not changing

• This is accomplished when we declare the 
global variable:

volatile uint8_t A;
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Back to Our Interrupt 
Implementation …

volatile uint8_t counter, duration;

SIGNAL(SIG_OVERFLOW0) {

++counter;

if(counter == 0) 

PORTB |= 1; 

if(counter >= duration)

PORTB &= ~1;

}
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Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?
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Initialization
int main(void) {

DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMER0_NOPRE);  // No prescaler
// Enable the timer interrupt
timer0_enable();
// Enable global interrupts
sei();

:
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PWM Implementation

What is the resolution (how long is one 
increment of “duration”)?
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PWM Implementation

What is the resolution (how long is one increment 
of “duration”)?

• The timer0 counter (8 bits) expires every 256 
clock cycles

(assuming a 16MHz clock)

st µ16
16000000

256 ==
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PWM Implementation

What is the period of the pulse?
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PWM Implementation

What is the period of the pulse?
• The 8-bit counter (of the interrupt) expires every 

256 interrupts

mst 096.4
16000000

256*256 ==



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

152

Doing “Something Else”
:

unsigned int i;

while(1) {

for(i = 0; i < 256; ++i) 
duration = i;

delay_ms(50);

};

};

}
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Interrupts and Timers

Timing can often involve a cascade of 
multiple counters:

• Prescalar (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency 
division
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DC Motors
• Current (ideally) is 

proportional to the torque 
produced by the motor

• Direction of current flow 
determines torque 
direction 

How can a digital input 
control torque magnitude?

www.tpub.com

www.pcgadgets.com
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LEDs to DC Motors

How can a digital input 
control torque magnitude?

• Use PWM!

How do we handle torque 
direction?

www.tpub.com

www.pcgadgets.com
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LEDs to DC Motors

How do we handle torque 
direction?

• +5V to north 0V to south
• 0V to north +5V to south

How would we implement 
this?

www.tpub.com

www.pcgadgets.com
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DC Motor Control

One possibility…
• Connect motor 

directly to the I/O pins

Two directions:
• PD2: 1; PD3: 0
• PD2: 0; PD3: 1



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

158

DC Motor Control

One possibility…
• Connect motor 

directly to the I/O pins

What is wrong with this 
implementation?
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DC Motor Control
What is wrong with this 

implementation?
• Our I/O pins can 

source/sink at most 20 
mA of current

• This is not very much 
when it comes to 
motors…

How do we fix this?
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Simple H-Bridge
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Simple H-Bridge

What 
happens 
with these 
inputs?

0

01

1
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Simple H-Bridge

What 
happens 
with these 
inputs?

• Motor 
turns in 
one 
direction

0

01

1
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Simple H-Bridge

How about 
these 
inputs?

1

10

0
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Simple H-Bridge

What 
happens 
with these 
inputs?

• Motor 
turns in 
the other 
direction!

1

10

0
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Simple H-Bridge

How about 
these 
inputs?

1

01

0
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Simple H-Bridge

What 
happens 
with these 
inputs?

• We short 
power to 
ground

• … very 
bad

1

01

0
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Simple H-Bridge

How can we 
prevent a 
processor 
from 
accidentally 
producing 
this case?

1

01

0
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Modified H-Bridge

We introduce a 
little logic to 
ensure the 
short never 
occurs
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Modified H-Bridge

What happens 
with this 
input? 0



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

170

Modified H-Bridge

What happens 
with this 
input? 0

0

01

1



Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

171

Modified H-Bridge

What happens 
with this 
input?

• Motor turns 
in one 
direction

0
0

01

1
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Modified H-Bridge

How about this 
input?

1
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Modified H-Bridge

What happens 
with this 
input? 1

1

10

0
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Modified H-Bridge

How about this 
input?

• Motor turns 
in the other 
direction

1
1

10

0
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Modified H-Bridge

1
1

10

0
This implementation 

is nice because we 
only need one 
direction bit of 
control

• What are we 
missing?
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Modified H-Bridge

1
1

10

0

What are we 
missing?

• Control of torque 
magnitude

• Let’s introduce a 
second PWM input

What would this look 
like?
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PWM and Direction Control
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PWM and Direction Control

What 
happens 
with this 
input?

0
x
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PWM and Direction Control

What 
happens?

• No current 
flow

0
x

0

0

0

0
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PWM and Direction Control

What 
happens 
now?

1
x
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PWM and Direction Control

What 
happens 
now?

• ‘x’
determines 
motor 
direction

1
x

x

x’

x’

x
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PWM and Direction Control

Direction

With the 
PWM input, 
we can 
control the 
magnitude 
of torque
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Flow of Data in I/O

Back to our serial interrupt handler 
example…

• How does the data flow through the 
processor?
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Interrupt Handler
SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

int c = getchar();

if(nchars < BUF_SIZE) {

buffer[(front+nchars)%BUF_SIZE] = c;

nchars += 1;

}

}
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Data Flow on Each Interrupt

Byte arrives at 
serial device
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Data Flow on Each Interrupt

Interrupt routine 
loads byte 
into a register
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Data Flow on Each Interrupt

Interrupt routine 
then writes 
byte out to 
buffer in RAM
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Flow of Data in I/O
With each transfer:
• The byte value moves from the device to a 

register
• And then moves from the register to RAM

This is OK when we have very little data to 
move

• But: when there is a lot of data, we can 
waste a lot of CPU time in this double 
transfer
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Moving a Lot of Data

Direct memory access:
• CPU gives control of the data bus to the 

device itself
• Device generates the address and 

read/write signals
• Once transfer is complete, CPU takes 

control back
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Data Flow During DMA

Device writes 
data directly 
into RAM

• Many bytes 
are 
transferred at 
a time
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Data Flow During DMA

• This data flow technique is common in 
video, audio, and disk transfers

• Enables the CPU to perform some 
operations in parallel

• Note: the mega8 itself does not support 
DMA (but your home computer does)
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Next Time

• Device communication
• Project 4


