
Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

1

Project 3 Adjustments

• Part 1 now due: April 11th (one week)
– This is a “soft” deadline

• Part 2 now due: April 18th (two weeks)
(project 4 complexity will be adjusted

accordingly)

Also: see discussion on D2L about types

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

2

Last Time

Digital to analog conversion
• Pulse-width modulation (PWM)
• Resistive networks
Analog to digital conversion
• Successive approximation
• Coding examples with the mega8
Project 3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

3

Today: Input/Output

• I/O via polling
• Serial interfaces
• I/O with interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

4

Administrivia

• Homework 5 due today @5:00

• Project 2 demonstrations need to be
completed by Tueday @3:30

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

5

Example: Stable Hovering

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

6

Lessons Learned from Lab 2

• Timing of sensory and control actions can
be important

• Sensors and actuators are rarely ideal
– Must account for this in our code

• Debugging can be a long process
– Control the experiments
– Implement and test in stages

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

7

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

8

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal (e.g., the interface
that you used for your robot)

• Serial signals
• Analog

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

9

I/O Systems
Many devices are operating independently

of the processor – except when
communication happens

• We say that these devices are acting
asynchronously of the processor

• The processor must have some way of
knowing that something has changed with
the device (e.g., that it is ready to send or
receive information)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

10

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

• Spatial resolution: ~.5
degrees, 1 cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

11

I/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {

x = PINB & 0x10;

}while(x == 0);

y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

12

I/O By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

13

I/O By Polling

What is wrong with this approach?
• In embedded systems, we are typically

managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

14

I/O By Polling

• We can potentially be waiting for a long
time before the state changes
– We call this busy waiting

• The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

15

I/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>

}while(x == 0);

y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

16

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

17

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

18

Serial Communication

• Hardware implementations are very
common:
– Our mega 8 has a Universal, Asynchronous

serial Receiver/Transmitter (UART)
– Handles all of the bit-level manipulation
– You only have to interact with it on the byte

level

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

19

Mega8
UART

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

20

Mega8
UART

• Transmit pin
(PD1)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

21

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

22

Mega8
UART

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

23

Mega8
UART

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

24

Mega8 UART C Interface

ioinit(): initialize the port
getchar(): receive a character
kbhit(): is there a character in the buffer?
putchar(): put a character out to the port

See the Atmel FAQ from the main class web
page

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

25

Mega8 UART C Interface

printf(): formatted output
scanf(): formatted input

See the LibAvr documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

26

Serial I/O by Polling
int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

27

I/O By Polling: An Alternative

Polling works great … but:
• We have to guarantee that our “something

else” does not take too long (otherwise,
we may miss the event)

• Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

28

I/O by Polling

In practice, we typically reserve this polling
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are measured in nano- to micro-
seconds)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

29

An Alternative: Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes an interrupt
handler (a small piece of code)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

30

Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

31

Interrupts

There are many possible interrupts
• How do we know which one has occurred?
• How does the processor respond to a

specific interrupt?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

32

Interrupts
How do we know which interrupt has

occurred?
• The mega8 hardware identifies each

interrupt with a unique integer

How does the processor respond to a
specific interrupt?

• The processor stores an interrupt table in
program memory

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

33

Mega8 Interrupt Table Implementation

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

34

Mega8 Interrupt Table Implementation

Address in
the program
memory

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

35

Mega8 Interrupt Table Implementation

Change
program
counter to
the location
identified by
“EXT_INT1”

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

36

Interrupt Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

37

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

38

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

39

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

40

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

41

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

42

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
rjmp EXT_INT1

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

43

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

44

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

45

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

46

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

47

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

48

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

49

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

50

Interrupt Routines
• Generally a very small number of

instructions
– We want a quick response so the processor

can return to what it was originally doing
• Register use

– If the interrupt routine makes use of registers,
then it must restore their state before
returning

– We accomplish this through the use of a
stack

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

51

The Stack

A hardware-supported data structure
composed of:

• A block of memory
• A stack pointer (SP) that indicates the

current top of the stack

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

52

The Stack (an example)

0x45 SP

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

53

The Stack (an example)

0x45 SP

Operation:
PUSH R1

(assume R1 contains 0x31)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

54

The Stack (an example)

0x45
SP0x31

Operation:
PUSH R1

(assume R1 contains 0x31)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

55

The Stack (an example)

0x45
SP0x31

Now perform:
PUSH R5

(assume R5 contains 0xF3)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

56

The Stack (an example)

0x45

SP
0x31

Now perform:
PUSH R5

(assume R5 contains 0xF3)

0xF3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

57

The Stack (an example)

0x45

SP
0x31

The interrupt routine (or
function) now performs its
job …

0xF3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

58

The Stack (an example)

0x45

SP
0x31

The interrupt routine (or
function) now performs its
job (changing R1 and
R5)… and now restores
the state of R5 and R1 …

0xF3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

59

The Stack (an example)

0x45

SP
0x31

Now perform:
POP R5

0xF3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

60

The Stack (an example)

0x45

SP
0x31

Now perform:
POP R5

R5 now is set to the value
that is on the top of the
stack (0xF3) …

0xF3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

61

The Stack (an example)

0x45
SP0x31

Now perform:
POP R5

R5 now is set to the value
that is on the top of the
stack (0xF3) … and the
stack pointer is
incremented

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

62

The Stack (an example)

0x45
SP0x31

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

63

The Stack (an example)

0x45 SP

Now perform:
POP R1

R1 receives the value on
the top of the stack (0x31)
and the SP is incremented

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

64

The Stack

In addition to the temporary storage of
register values, the stack is also used to:

• Pass parameters to a function
• Store the return location for use after an

interrupt or a function call
• Store the value of the status register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

65

Stack Manipulation in the Mega8

In the Mega8 and with our gcc compiler:
• Stack manipulation is typically hidden from

us
• This is true for functions as well as

interrupt routines

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

66

Last Time
• I/O by polling

– Can lead to wasted CPU time due to “busy
waiting”

– Can miss events if you don’t check for them
often enough

• Interrupts
– Temporarily stop what the processor is doing
– Execute a small “interrupt handler” function
– Return the processor to its original state and

keep executing as if nothing else has happened

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

67

Last Time
Stack: location in memory for temporary

storage
• Save register states
• Save return location (so we know where to

come back after a function or an interrupt
• Pass function parameters

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

68

Today

• Interrupt handler example
– Dealing with large volumes of incoming data

• Hardware timers and associated interrupts
– Will allow us to precisely time the regular

execution of certain interrupt handlers

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

69

Administrivia

• Project 3:
– Soft deadline for part #1 (encoder processing)

is due on Tuesday

• 4 Robots are working well now
– Left/right turning asymmetry has been fixed

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

70

Back to Receiving Serial Data…

With this solution, how long can “something else” take?

int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

71

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

72

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

• The UART implements a 1-byte buffer
• Let’s create a larger buffer…

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

73

Receiving Serial Data

Creating a larger buffer. This will be a
globally-defined data structure composed
of:

• N-byte memory space:
char buffer[BUF_SIZE];

• Integers that indicate the first element in
the buffer and the number of elements:

int front, nchars;

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

74

Buffered Serial Data

Implementation:
• We will use an interrupt routine to transfer

characters from the UART to the buffer as
they become available

• Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

75

Interrupt Handler
// Called when the UART receives a byte

SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

76

Interrupt Handler
// Called when the UART receives a byte

SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

int c = getchar();

if(nchars < BUF_SIZE) {

buffer[(front+nchars)%BUF_SIZE] = c;

nchars += 1;

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

77

Reading Out Characters

// Called by a “main” program

// Get the next character from the
circular buffer

int get_next_character() {

int c;

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

78

Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

int c;
if(nchars == 0)

return(-1); // Error
else {

// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;
front = (front + 1)%BUF_SIZE;
return(c);

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

79

An Updated main()
int c;

while(1) {

do {

????

}while(???);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

80

An Updated main()
int c;

while(1) {

do {

c = get_next_character();

if(c != -1)

<do something with the character>

}while(c != -1);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

81

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ….

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

82

Buffered Serial Data

Subtle issues:
• The reading side of the code must make

sure that it does not allow the buffer to
overflow
– But at least we have BUF_SIZE times more

time

• We have a shared data problem …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

83

The Shared Data Problem

• Two independent segments of code that
could access the same data structure at
arbitrary times

• In our case, get_next_character() could be
interrupted while it is manipulating the
buffer
– This can be very bad

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

84

Solving the Shared Data Problem

• There are segments of code that we want
to execute without being interrupted

• We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

85

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

86

Disabling Interrupts

• How can we modify get_next_character()?

• The it is important that the critical section be as
short as possible

Assume:
• serial_receive_enable(): enable interrupt flag
• serial_receive_disable(): clear (disable) interrupt

flag

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

87

Modified get_next_character()
int get_next_character() {

int c;

serial_receive_disable();

if(nchars == 0)

serial_receive_enable();
return(-1); // Error

else {

// Pull out the next character

c = buffer[front];

--nchars;

front = (front + 1)%BUF_SIZE;

serial_receive_enable();
return(c);

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

88

Initialization Details
main()

{

nchars = 0;

front = 0;

// Enable UART receive interrupt

serial_receive_enable();

// Enable global interrups

sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

90

Enabling/Disabling Interrupts

• Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted
– This allows for safe access to shared

variables

• But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

91

Last Time

• Interrupts in practice
• Serial data processing
• Data buffering
• Shared data problem

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

92

Today

• Timers/counters
• Generating regular interrupts
• Direct Memory Access (DMA)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

93

Administrivia

• Should have part 1 of project 3
demonstrated today

• Homework 5 and project 2 grading done
for Thursday

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

94

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices. These can:

• Be used to count the number of events
that have occurred (either external or
internal)

• Act as a clock
• Trigger an interrupt after a specified

number of events

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

95

Timer 0

• Input source:
– Pin T0 (PD4)
– System clock

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to

0x0, an interrupt can be generated

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

96

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

97

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

98

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

99

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

100

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

– These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

101

Timer 0 Implementation

MUX selects between
these different inputs

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

102

Timer 0 Implementation

MUX selects between
these different inputs

• Control bits determine
source

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

103

Timer 0 Implementation

MUX selects between
these different inputs

• 000: No input

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

104

Timer 0 Implementation

MUX selects between
these different inputs

• 001: System clock

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

105

Timer 0 Implementation

MUX selects between
these different inputs

• 010: System clock div 8

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

106

Timer 0 Implementation

MUX selects between
these different inputs

• 011: System clock div 64

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

107

Timer 0 Implementation

MUX selects between these
different inputs

• 110: Falling edge of pin T0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

108

Timer 0 Implementation

MUX selects between these
different inputs

• 111: Rising edge of pin T0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

109

Timer 0

• TCNT0: 8-bit
counter (a register)

• TCCR0: control
register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

110

Timer 0

• Clock source from
previous slide

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

111

Timer 0

• Increment counter
on every low-to-high
transition

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

112

Timer 0 Example

Suppose:
• 16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to

156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

113

Timer 0 Example

mssdelay 109948
000,000,16
156*1024 ≈== µ

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

114

Timer 0 Code Example
timer0_config(TIMER0_PRE_1024); // Prescale by 1024

timer0_set(0); // Set the timer to 0

// Do something else for a while
while(timer0_read() < 156) {
};

// Break out at ~10 ms

See Atmel FAQ for example code

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

115

Timer 0 Example

Advantage over delay_ms():
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

116

Timer 0 Example

Disadvantage:
• “something else” cannot take very much

time

What is the solution?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

117

Timer 0 Interrupt

What is the solution?
• Use interrupts!
• We can configure the timer to generate an

interrupt every time the timer’s counter
rolls over from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

118

Timer 0 Example II

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

119

Timer 0 Example II

msinterval 384.16
000,000,16
256*1024 ==

How many counts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

120

Timer 0 Example II

0352.61
384.16

1000 ==
ms

ms
counts

How many counts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

121

Example II: Interrupt Routine
SIGNAL(SIG_OVERFLOW0) {

++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel FAQ for example code

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

122

Example II: Initialization
// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

123

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
– PB0 state is altered asynchronously

• Note that we can still have the shared data
problem (but not in this example)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

124

Other Timers

Timer 1:
• 16 bit counter

Timer 2:
• 8 bit counter

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

125

Next Topic: Information Encoding

We have talked about various forms of
information encoding:

• Analog: use voltage to encode a value
• Parallel digital
• Serial digital

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

126

Next Topic: Information Encoding

An alternative: pulse-width modulation
(PWM)

• Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

127

PWM Example:

RC Servo Motors
• 3 pins: power (red),

ground (black), and
command signal (white)

• Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

128

PWM Example

Internal circuit translates pulse width into a goal
position:

• 0.5 ms: 0 degrees
• 1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

129

RC Servo Motors

• Internal potentiometer measures the
current orientation of the shaft

• Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

130

PWM Example II:
Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

131

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

132

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

133

Controlling LED Brightness
Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

134

Controlling LED Brightness

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

135

Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

counter
• When the counter is 0, turn the LED on
• When the counter reaches some

“duration”, turn the LED off

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

136

Last Time

• Interrupts
• Timers
• Generating regular interrupts
• PWM control

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

137

Today

• Interrupt subtleties
• DC motor control
• Direct Memory Access (DMA)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

138

Administrivia

• Project 3 due on Tuesday
• New Atmel programmers are on-line.

– See Atmel FAQ for details on how to use
them

– You will need a different adapter between the
programmer and your circuit (but your circuit
does not need to change)

• Schedule has been updated
– See readings for coming weeks

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

139

Interrupt Challenge I: Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

140

Shared Data and Compiler
Optimizations

For example:
A = A + 1;

C = B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

141

Shared Data and Compiler
Optimizations

Now consider:

while(1) {

PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

142

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A into register 1

while(1) {

PORTB = R1;

}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

143

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

SIGNAL(SIG_OVERFLOW0){

A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

144

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

145

Back to Our Interrupt
Implementation …

volatile uint8_t counter, duration;

SIGNAL(SIG_OVERFLOW0) {

++counter;

if(counter == 0)

PORTB |= 1;

if(counter >= duration)

PORTB &= ~1;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

146

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

147

Initialization
int main(void) {

DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMER0_NOPRE); // No prescaler
// Enable the timer interrupt
timer0_enable();
// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

148

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

149

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

st µ16
16000000

256 ==

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

150

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

151

PWM Implementation

What is the period of the pulse?
• The 8-bit counter (of the interrupt) expires every

256 interrupts

mst 096.4
16000000

256*256 ==

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

152

Doing “Something Else”
:

unsigned int i;

while(1) {

for(i = 0; i < 256; ++i)
duration = i;

delay_ms(50);

};

};

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

153

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

• Prescalar (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

154

DC Motors
• Current (ideally) is

proportional to the torque
produced by the motor

• Direction of current flow
determines torque
direction

How can a digital input
control torque magnitude?

www.tpub.com

www.pcgadgets.com

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

155

LEDs to DC Motors

How can a digital input
control torque magnitude?

• Use PWM!

How do we handle torque
direction?

www.tpub.com

www.pcgadgets.com

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

156

LEDs to DC Motors

How do we handle torque
direction?

• +5V to north 0V to south
• 0V to north +5V to south

How would we implement
this?

www.tpub.com

www.pcgadgets.com

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

157

DC Motor Control

One possibility…
• Connect motor

directly to the I/O pins

Two directions:
• PD2: 1; PD3: 0
• PD2: 0; PD3: 1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

158

DC Motor Control

One possibility…
• Connect motor

directly to the I/O pins

What is wrong with this
implementation?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

159

DC Motor Control
What is wrong with this

implementation?
• Our I/O pins can

source/sink at most 20
mA of current

• This is not very much
when it comes to
motors…

How do we fix this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

160

Simple H-Bridge

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

161

Simple H-Bridge

What
happens
with these
inputs?

0

01

1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

162

Simple H-Bridge

What
happens
with these
inputs?

• Motor
turns in
one
direction

0

01

1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

163

Simple H-Bridge

How about
these
inputs?

1

10

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

164

Simple H-Bridge

What
happens
with these
inputs?

• Motor
turns in
the other
direction!

1

10

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

165

Simple H-Bridge

How about
these
inputs?

1

01

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

166

Simple H-Bridge

What
happens
with these
inputs?

• We short
power to
ground

• … very
bad

1

01

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

167

Simple H-Bridge

How can we
prevent a
processor
from
accidentally
producing
this case?

1

01

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

168

Modified H-Bridge

We introduce a
little logic to
ensure the
short never
occurs

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

169

Modified H-Bridge

What happens
with this
input? 0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

170

Modified H-Bridge

What happens
with this
input? 0

0

01

1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

171

Modified H-Bridge

What happens
with this
input?

• Motor turns
in one
direction

0
0

01

1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

172

Modified H-Bridge

How about this
input?

1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

173

Modified H-Bridge

What happens
with this
input? 1

1

10

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

174

Modified H-Bridge

How about this
input?

• Motor turns
in the other
direction

1
1

10

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

175

Modified H-Bridge

1
1

10

0
This implementation

is nice because we
only need one
direction bit of
control

• What are we
missing?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

176

Modified H-Bridge

1
1

10

0

What are we
missing?

• Control of torque
magnitude

• Let’s introduce a
second PWM input

What would this look
like?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

177

PWM and Direction Control

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

178

PWM and Direction Control

What
happens
with this
input?

0
x

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

179

PWM and Direction Control

What
happens?

• No current
flow

0
x

0

0

0

0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

180

PWM and Direction Control

What
happens
now?

1
x

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

181

PWM and Direction Control

What
happens
now?

• ‘x’
determines
motor
direction

1
x

x

x’

x’

x

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

182

PWM and Direction Control

Direction

With the
PWM input,
we can
control the
magnitude
of torque

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

183

Flow of Data in I/O

Back to our serial interrupt handler
example…

• How does the data flow through the
processor?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

184

Interrupt Handler
SIGNAL(SIG_UART_RECV) {

// Handle the character in the UART buffer

int c = getchar();

if(nchars < BUF_SIZE) {

buffer[(front+nchars)%BUF_SIZE] = c;

nchars += 1;

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

185

Data Flow on Each Interrupt

Byte arrives at
serial device

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

186

Data Flow on Each Interrupt

Interrupt routine
loads byte
into a register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

187

Data Flow on Each Interrupt

Interrupt routine
then writes
byte out to
buffer in RAM

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

188

Flow of Data in I/O
With each transfer:
• The byte value moves from the device to a

register
• And then moves from the register to RAM

This is OK when we have very little data to
move

• But: when there is a lot of data, we can
waste a lot of CPU time in this double
transfer

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

189

Moving a Lot of Data

Direct memory access:
• CPU gives control of the data bus to the

device itself
• Device generates the address and

read/write signals
• Once transfer is complete, CPU takes

control back

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

190

Data Flow During DMA

Device writes
data directly
into RAM

• Many bytes
are
transferred at
a time

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

191

Data Flow During DMA

• This data flow technique is common in
video, audio, and disk transfers

• Enables the CPU to perform some
operations in parallel

• Note: the mega8 itself does not support
DMA (but your home computer does)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

192

Next Time

• Device communication
• Project 4

