
Last Time

• Communication through buses
– System buses
– Backplane buses
– I/O buses

• I2C Bus
– 2-wire
– Multi-master

• Project 4



Today

• Operating systems
• Multitasking



Administrivia

• Lab 4: due next Thursday @5:00
– Demo
– Group report
– Personal report

• Lab hours today: 10:30-3:30
• Homework 6 out next Tuesday



Operating Systems

Operating systems are all about 
abstraction…

• Typically multiple layers in the abstraction
• Each layer hides some of the details of 

what is below
• A layer will often unify several components 

at lower layers 



Common OS Layers

• Device drivers: direct interface to 
hardware

• Kernel: system management activities
• Middleware: provides general high-level 

services that may be used by custom 
applications

The precise divisions will vary depending on 
the OS and system



Device Drivers

• Small pieces of code that interface to 
specific types of hardware

• Typically designed to execute very quickly
• Provide a more uniform interface to the 

hardware
– Different implementations “look” the same to 

the software above



Device Drivers

Example
• Different disk manufacturers use different 

protocols for reading/writing from/to their 
disks

• A device driver for one type of disk can 
make it appear to the rest of the system as 
any other disk



Kernel

System management services:
• Process management: allows us to 

separate our programs into multiple, 
separate tasks (or processes)

• Memory management: controlled sharing 
of memory between processes

• I/O management: 
– Device sharing (across processes) 
– Providing key abstractions (e.g., files)



Processors to Processes
Processor: the hardware that executes a 

program
• A single processor essentially does only 

one thing at any one time

Process: the computational abstraction
• Consists of: program, memory, stack, 

program counter, etc.
• But: 

– It is a passive entity
– Many can exist at any one time



Handling Multiple Tasks/Processes

With an interrupt, we implemented two 
separate tasks:

• Main code body (our “something else”)
• Interrupt handler: deal with the external or 

internal event



Handling Multiple Tasks/Processes

With an interrupt, we implemented two 
separate tasks:

• Main code body (our “something else”)
• Interrupt handler: deal with the external or 

internal event

• These are essentially separate entities
• But: with a little bit of communication 

between them



Handling Multiple Tasks

With a complex system:
• Often have many different tasks to be 

performed
• These tasks can have different timing 

requirements:
– How often they must be performed
– How quickly they must respond to an event



The Multi-Tasking Abstraction

This abstraction is key to building complex 
systems

• We can construct our system as a set of 
compartmentalized modules

• Each module can be implemented and 
tested separately

• It is easy to “mix and match” modules 
depending on the application



The Multi-Tasking Abstraction

This abstraction is key to building complex 
systems

• Each process has the “illusion” of owning 
the processor all of the time

• Allows for efficient use of the CPU and 
other system resources



Multi-tasking

• At any one time, a single process is in 
control of (or “owns”) the processor
– We refer to this process as being in a running 

state

• All other processes are either:
– In a waiting state: waiting on some external 

or internal event
– In a ready state: ready to execute when the 

processor is free



An Example: USC AFV
Sensors:
• Downward-oriented 

sonars: height and 
attitude

• Compass: yaw 
direction

• Rotor encoder: 
rotational velocity

• Downward-looking 
camera: position on 
field



An Example: USC AFV
Actuators:
• Rotor collective
• Rotor torque
• Rotor pitch
• Rotor yaw
• Rudder 



An Example: USC AFV
Tasks include:
• Thrust control
• Attitude control
• Heading control
• Move to height
• Search for target
• Hover over target
• Planner



AFV Process Architecture

• df



Multi-Tasking Components

• Process control block (PCB): data 
structure that describes the process

• Scheduling: deciding which process to 
execute now

• Inter-task communication: moving data 
between processes

• Synchronization: mechanism for safely 
coordinating the actions of two or more 
processes



Process (or Task) Control Block

• Process identifier (PID)
• Process state (running, waiting, ready)
• Priority
• Information about memory allocated to the 

process (including primary memory and 
the stack)

• Register state (including program counter)



Operations on a Process

• Creation (fork/exec/spawn)
• Suspend: stop a process temporarily
• Resume: undo the suspend
• Destroy: stop executing the process and 

deallocate its memory



Last Time

• Operating Systems
– Device drivers
– Kernel
– Middleware

• Processes



Today

• More on processes
– Blocking
– Context switching

• Scheduling policies
– How to select the next process to execute?
– Queues
– Priorities
– Preemption



Administrivia
• Project 4 due Thursday

– Demonstration
– Group report
– Personal report

• Homework 6 out tonight
• Next Tuesday: virtual guest visit

Jim Montgomery
Robotic Software Systems Group
NASA/Jet Propulsion Laboratory

– Readings will be posted on D2L



Multi-tasking

• At any one time, a single process is in 
control of (or “owns”) the processor
– We refer to this process as being in a running 

state

• All other processes are either:
– In a waiting state: waiting on some external 

or internal event
– In a ready state: ready to execute when the 

processor is free



Causing a Process to Block

A variety of situations can cause a process 
to move into a blocked or waiting state:

• Waiting for an I/O operation to complete
• Waiting for a timer to expire (e.g., if the 

process is to execute once every 10 ms)
• Waiting for another process to provide 

information or to complete its current 
operation



Switching Between Processes

The OS will switch from one process to 
another at some instant in time.  This can 
happen for a variety of reasons (and 
depending on the OS)

• The current process blocks on some event
• The process no longer needs the processor
• The process has executed for long enough
• A process of higher priority requires the 

processor



Context Switches
• The state of current process must be 

saved:
– Program counter
– Stack pointer
– Registers

• The state of the next process is then 
restored to the processor:
– Program counter
– Stack pointer
– Registers



Processes and Threads

Threads are sometimes called lightweight 
processes

• Memory:
– Processes have their own, separate memory
– A set of threads will share memory

• Coordination
– Processes will often be independent of one-another
– Threads are typically working together on a common 

problem



A Process Example

• df



An Example: 
Altitude Control Process

“BURTE” kernel
void altitude_servo_loop()

{

set_schedule_interval(10);  // 10ms

while(1)

{

collective = Kp * (height_desired – height) 

- Kv * height_velocity;

set_collective(collective);

next_interval(); // Wait for the next control

//  cycle

};

};



An Example: 
Starting the Process

main()

{

:

pid = create(altitude_servo_loop, 10, 3000);

start(pid);

:

};



An Example: 
Starting the Process

main()

{

:

pid = create(altitude_servo_loop, 10, 3000);

start(pid);

:

};

Name of function



An Example: 
Starting the Process

main()

{

:

pid = create(altitude_servo_loop, 10, 3000);

start(pid);

:

};

Priority



An Example: 
Starting the Process

main()

{

:

pid = create(altitude_servo_loop, 10, 3000);

start(pid);

:

};

Size of stack



An Example: 
Starting the Process

main()

{

:

pid = create(altitude_servo_loop, 10, 3000);

start(pid);

:

};

Start the process



Summary

• Process: an piece of code with data and 
processor state information

• Multi-processing: switching quickly 
between processes

• Process control block: data structure for 
process management



Selecting a Process to Execute

Only one process may occupy the processor 
at any one time…

throttle heading attitude throttle translate ……

Time



Selecting a Process to Execute

A scheduler is responsible for selecting the 
next process

• How might we do this?



Scheduling Policies
Only processes in the ready state may be 

selected

• Round robin: rotate between the different 
processes

• Priority-based: select the highest-priority process 
that is ready to execute

• Shortest-process-first: select the one that will 
use the processor for the shortest period of time

• Preemption: interrupt an executing process



Evaluating Scheduling Policies

Metrics for evaluation include:
• Response time: time for a process to move 

from ready to running
• Turn-around time: time for a process to move 

from ready to running and then to leave running
• Throughput: number of processes that can be 

executed in a given period of time
• Overhead: the amount of time required by the 

operating system to perform scheduling



Evaluating Scheduling Policies

Other key concepts:
• Fairness: all processes get some access 

to the processor (and other resources)
• Starvation: a process never gets access 

to the processor (because other processes 
are occupying it)



Round Robin Scheduling

• Queue: an ordered list of processes that 
are in a ready state

• Selecting the next processes: remove the 
process from the top of the queue

• Any new processes: add to the end of the 
queue

Note: the book defines RR as necessarily 
being preemptive.  This is not the case 



Priority-Based Scheduling

• Each process is assigned an integer 
priority

• Selecting the next process: of all the 
processes that are ready, pick the one 
with the highest priority



Hybrid Scheduler Example

• Have a queue for each distinct priority 
level

• Use round robin for the highest priority 
queue 

• If there are no processes to execute, then 
perform round robin between the 
processes in the next queue

• Repeat



Heli Example

Processes with strict timing requirements are the highest 
priority processes  



Heli Example

Many processes operate on timescales of seconds



Heli Example

Other processes operate at timescales of 10s of seconds



Shortest-Process-First Scheduling

Select the process that will execute for the 
shortest period of time before giving up the 
processor

Challenges with this?



Shortest-Process-First Scheduling

Select the process that will execute for the 
shortest period of time before giving up the 
processor

• How do we know how much time a 
process will take?  We could:
– Require a process to declare this
– Estimate from past process behavior

• Can lead to starvation of low-priority 
processes



Non-Preemptive Scheduling

• So far, we have assumed that a process 
has voluntarily given up the processor

• This works if we are careful in our 
implementation

• But – we can have problems if a process 
does not “play nice”



Preemptive Scheduling

A process can be forced off the processor 
by the operating system

• Typically, a process is given a fixed-
duration timeslice in which to execute

• If the process does not give up the 
processor within this time:
– A different process is given the processor
– The process is returned to the ready state



Hybrid Scheduler II

Combine preemption and priority-based 
scheduling



Hybrid Scheduler II

Combine preemption and priority-based 
scheduling (“priority preemptive 
scheduling”)

• A process can be preempted at any time 
by a higher-priority process



Hybrid Scheduler III

Combine preemption and priority-based 
scheduling

• The number of timeslices that a process is 
given within a particular period of time is 
proportional to its priority



Rate Monotonic Scheduling

N tasks:
• Ti = the period between executions of task i
• Ei = worst case execution time
• So: Ei/Ti = the fraction of processor time 

required by task i



Scheduling Regular Tasks

In many control systems, tasks (processes) 
must be executed at a regular frequency

• How can we be sure that all tasks can be 
performed?



Rate Monotonic Scheduling

• Preemptive scheduling
• Process priority is proportional to 

execution frequency



RMS Theorem

• Want to know if we can execute all of our 
processes

• A set of processes is schedulable if:

( )12 /1 −≤�
n

i i

i n
T
E



RMS Example

3 processes
• 1 ms at 100 Hz
• 10 ms at 20 Hz
• 100 ms at 2 Hz



RMS Example

3 processes
• 1 ms at 100 Hz
• 10 ms at 20 Hz
• 100 ms at 4 Hz

100 * .001 + 20 * .01 + 4 * .1 <= .7798

Yes!



RMS Example II

4 processes
• 0.1 ms at 2000 Hz
• 1.5 ms at 120 Hz
• 8 ms at 40 Hz
• 13 ms at 10 Hz



RMS Example II

4 processes
• 0.1 ms at 2000 Hz
• 1.5 ms at 120 Hz
• 8 ms at 40 Hz
• 13 ms at 10 Hz

2000 * .0001 + 120 * .0015 + 40 * .008 + 10 * .013 
<= 0.7568

No!



Next Time

Coordination between processes
• Inter-process communication
• Synchronization and mutual exclusion



Last Time

• Scheduling
• Round Robin
• Priority-based
• Shorted-Process-First
• Preemption
• Rate Monotonic Scheduling



Today

• A bit more on scheduling
• Process synchronization



Administrivia

• Project 4 due today @5:00
• Homework 6 due on Tuesday @5:00

• Next Tuesday: virtual guest visit

Jim Montgomery
Robotic Software Systems Group
NASA/Jet Propulsion Laboratory

– Readings posted on D2L



Administrivia II

• Need office hours tomorrow/Monday?
• Quizzes graded by tomorrow

• Final exam: submit example questions and 
answers to the D2L discussion board



Scheduling Regular Tasks
N tasks (processes):
• Ti = the period between executions of task i
• Ei = worst case execution time
• So: Ei/Ti = the fraction of processor time 

required by task I

Key: want a process to complete its ith
execution before i+1 enters the ready 
queue



An Example Scheduling Problem  

• All start in the ready queue at time 0
• Process 1 is first in the queue (2 is the 2nd)
• Round Robin scheduling
What is the sequence of execution?

60 ms1 sProcess 3

40 ms250 msProcess 2

30 ms100 msProcess 1

EiTi



Quiz Problem

Scheduling algorithm: priority with 
preemption

• Process 1: highest priority
• Process 2: middle priority
• Process 3: lowest priority

Given the same set of processes, what is 
the sequence of execution?



Group Quiz Problem #2

Scheduling algorithm: round robin with 
timeslices

• Assume 20 ms timeslices

Given the same set of processes, what is 
the sequence of execution?



Group Quiz Problem #3

Scheduling algorithm: priority with 
preemption

• Assume Process 1 has highest priority
• Schedule out to 125 ms

40 ms100 msProcess 2

25 ms50 msProcess 1

EiTi



Group Quiz Problem #4

Scheduling algorithm: priority with 
preemption

• Assume Process 2 has highest priority
• What choice would Rate Monotonic 

Scheduling make about priority?
• Does RMS say that these processes are 

necessarily schedulable? 

40 ms100 msProcess 2

25 ms50 msProcess 1

EiTi



Scheduling

What did we learn?
• Priority matters!
• The Rate Monotonic Scheduling constraint 

is a sufficient condition for schedulability -
but not a necessary one



Rate Monotonic Scheduling

What is the total processor utilization?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



Rate Monotonic Scheduling

What is the total processor utilization?
90%

Do we pass the RMS constraint?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



Rate Monotonic Scheduling

Do we pass the RMS constraint?
NO

What is the schedule anyway?

30 ms75 msProcess 2

25 ms50 msProcess 1

EiTi



Process Synchronization

So far:
• Allowing many different processes to 

share the same processor
• But – we have assumed that these 

processes are independent from one 
another (not generally the case)



Process Dependence

We have already seen this:
• Project 3: the interrupt routine provided 

data (encoder counts) that were used by 
the main program

• Serial buffering: the interrupt routine 
placed arriving bytes into a common 
buffer.  These bytes were read out 
asynchronously by the main program



Process Dependence

Sharing data structures between is not 
always a problem …



Process Dependence

Sharing data structures between is not 
always a problem …

• It becomes a problem when one process 
can interrupt the other at an arbitrary time
– In particular, in the middle of the modification 

or reading of a shared data structure



Process Dependence

Sharing data structures between is not 
always a problem …

• It becomes a problem when one process 
can interrupt the other at an arbitrary time
– In particular, in the middle of the modification 

or reading of a shared data structure

– Such as: with interrupt routines or in some 
form of preemptive scheduling



A Synchronization Problem

Consider the following code that you 
“execute”:

if(noMilk()) 

{

buyMilk();

}



A Synchronization Problem

Consider the following code that you “execute”:

if(noMilk()) 

{

buyMilk();

putMilkInFridge();

}

This works great, but …



A Synchronization Problem

This works great, but …
• Suppose your roommate has the same 

program 
• What can happen?



Synchronization and Milk
Consider the following sequence of events:

Your RoommateYouTime

Error!

Arrive at home: put milk in fridge3:50

Arrive at store; Buy milk3:45

Arrive at home: put milk in fridge3:35

Leave for storeBuy milk3:25

Look in fridge: no milk!Arrive at store3:20

Arrive at home3:15

Leave for store3:10

Look in fridge: no milk!3:05

Arrive at home3:00



Synchronization and Milk
Consider the following sequence of events:

Your RoommateYouTime

Error!

Arrive at home: put milk in fridge3:50

Arrive at store; Buy milk3:45

Arrive at home: put milk in fridge3:35

Leave for storeBuy milk3:25

Look in fridge: no milk!Arrive at store3:20

Arrive at home3:15

Leave for store3:10

Look in fridge: no milk!3:05

Arrive at home3:00



Synchronization and Milk
Consider the following sequence of events:

Your RoommateYouTime

Error!

Arrive at home: put milk in fridge3:50

Arrive at store; Buy milk3:45

Arrive at home: put milk in fridge3:35

Leave for storeBuy milk3:25

Look in fridge: no milk!Arrive at store3:20

Arrive at home3:15

Leave for store3:10

Look in fridge: no milk!3:05

Arrive at home3:00



Synchronization and Milk

• The processes: you and your roommate
• The common data structure: the 

refrigerator
• Asynchronous access to the data 

structure:
– You view the state of the fridge at a different 

time than when you change its state



Synchronization Concepts

• Mutual exclusion: ensure that only one 
process has access to a data structure at 
any one time (no matter how many 
operations it must perform)

• Synchronization: use of atomic
operators to ensure this safe access to 
data structures
– Atomic operator: cannot be interrupted



Synchronization Concepts

• Critical section: a piece of code that can 
only be executed by one process at a time

• Lock: (one) mechanism to ensure 
exclusive access
– Lock before accessing common data structure

• Must wait if it is already locked

– Access the data
– Unlock



A Solution in Code

lockFridge();

if(noMilk()) 

{

buyMilk();

putMilkInFridge();

}

unlockFridge();



Solution Notes

• Shared resource is locked while it is being 
accessed

• Must ensure that the resource is unlocked after 
completion

• Locking implies process waiting
– Can improve this example with a more clever 

implementation

• Locking/unlocking provided by a library or the 
OS



Additional Questions

1. Project work contributed to understanding of 
the material

2. Project group was appropriately sized
3. Project group functioned well
4. I learned something (class-oriented) from a 

lab-mate
5. Readings were helpful in understanding class 

material
6. Class and book (on top of prerequisite 

programming class) provided appropriate 
background for project work


