Last Time

« Communication through buses
— System buses

— Backplane buses
— 1/O buses

 |1°C Bus

— 2-wire

— Multi-master
* Project 4

Today

» Operating systems
» Multitasking

Administrivia

» Lab 4: due next Thursday @5:00
— Demo

— Group report
— Personal report

» Lab hours today: 10:30-3:30
« Homework 6 out next Tuesday

Operating Systems

Operating systems are all about
abstraction...

» Typically multiple layers in the abstraction

« Each layer hides some of the details of
what is below

* A layer will often unify several components
at lower layers

Common OS Layers

 Device drivers: direct interface to
hardware

» Kernel: system management activities

* Middleware: provides general high-level
services that may be used by custom
applications

The precise divisions will vary depending on
the OS and system

Device Drivers

« Small pieces of code that interface to
specific types of hardware

« Typically designed to execute very quickly

 Provide a more uniform interface to the
hardware

— Different implementations “look” the same to
the software above

Device Drivers

Example

 Different disk manufacturers use different
protocols for reading/writing from/to their
disks

* A device driver for one type of disk can
make it appear to the rest of the system as
any other disk

Kernel

System management services:

* Process management: allows us to
separate our programs into multiple,
separate tasks (or processes)

* Memory management: controlled sharing
of memory between processes

 [/O management:
— Device sharing (across processes)
— Providing key abstractions (e.g., files)

Processors to Processes

Processor: the hardware that executes a
program

* A single processor essentially does only
one thing at any one time

Process: the computational abstraction

» Consists of: program, memory, stack,
program counter, etc.

« But:
— It is a passive entity
— Many can exist at any one time

Handling Multiple Tasks/Processes

With an interrupt, we implemented two
separate tasks:

« Main code body (our “something else”)

* Interrupt handler: deal with the external or
internal event

Handling Multiple Tasks/Processes

With an interrupt, we implemented two
separate tasks:

« Main code body (our “something else”)

* Interrupt handler: deal with the external or
internal event

* These are essentially separate entities

« But: with a little bit of communication
between them

Handling Multiple Tasks

With a complex system:

» Often have many different tasks to be
performed

* These tasks can have different timing
requirements:
— How often they must be performed
— How quickly they must respond to an event

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

* We can construct our system as a set of
compartmentalized modules

« Each module can be implemented and
tested separately

* |tis easy to “mix and match” modules
depending on the application

The Multi-Tasking Abstraction

This abstraction is key to building complex
systems

» Each process has the “illusion” of owning
the processor all of the time

* Allows for efficient use of the CPU and
other system resources

Multi-tasking

» At any one time, a single process is in
control of (or “owns”) the processor

— We refer to this process as being in a running
state

 All other processes are either:

— In a waiting state: waiting on some external
or internal event

— In a ready state: ready to execute when the
processor is free

An Example: USC AFV

Sensors:
. Autonomous Flying Vehicle
« Downward-oriented USC Robotics

sonars: height and
attitude

« Compass: yaw
direction

» Rotor encoder:
rotational velocity

* Downward-looking
camera: position on
field

An Example: USC AFV

Actuators: e
Autonomous Flying Vehicle

e Rotor collective USC Robotics

* Rotor torque

 Rotor pitch

» Rotor yaw

* Rudder

An Example: USC AFV

Tasks include: Autonomous Flying Vehicle
* Thrust control USC Robotics

« Attitude control

« Heading control

* Move to height

« Search for target
* Hover over target
* Planner

AFV Process Architecture

instantiate
target

allocentric
map

sensory o
and activation
behavior state map parameters
information egocentric
<
: position target position
stationary over move
search over toward attention
arget arget motor target
afferents position image
™~ processor

craft
configuration
transition <
to height |
desired pan/tilt camera
heading me i

desired
height

€«
l \ \ i tactile _
A S N

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Multi- Tasking Components

Process control block (PCB): data
structure that describes the process

Scheduling: deciding which process to
execute now

Inter-task communication: moving data
between processes

Synchronization: mechanism for safely
coordinating the actions of two or more
processes

Process (or Task) Control Block

Process identifier (PID)

Process state (running, waiting, ready)
Priority

nformation about memory allocated to the

process (including primary memory and
the stack)

Register state (including program counter)

Operations on a Process

Creation (fork/exec/spawn)
Suspend: stop a process temporarily
Resume: undo the suspend

Destroy: stop executing the process and
deallocate its memory

Last Time

» Operating Systems
— Device drivers
— Kernel
— Middleware

* Processes

Today

* More on processes
— Blocking
— Context switching

» Scheduling policies
— How to select the next process to execute?
— Queues
— Priorities
— Preemption

Administrivia

* Project 4 due Thursday
— Demonstration
— Group report
— Personal report

 Homework 6 out tonight
* Next Tuesday: virtual guest visit

Jim Montgomery
Robotic Software Systems Group

NASA/Jet Propulsion Laboratory

— Readings will be posted on D2L

Multi-tasking

» At any one time, a single process is in
control of (or “owns”) the processor

— We refer to this process as being in a running
state

 All other processes are either:

— In a waiting state: waiting on some external
or internal event

— In a ready state: ready to execute when the
processor is free

Causing a Process to Block

A variety of situations can cause a process
to move into a blocked or waiting state:

« Waiting for an |/O operation to complete

« Waiting for a timer to expire (e.g., if the
process is to execute once every 10 ms)
» Waiting for another process to provide

information or to complete its current
operation

Switching Between Processes

The OS will switch from one process to
another at some instant in time. This can
happen for a variety of reasons (and
depending on the OS)

* The current process blocks on some event
* The process no longer needs the processor
* The process has executed for long enough

» A process of higher priority requires the
processor

Context Switches

* The state of current process must be
saved:

— Program counter
— Stack pointer
— Registers
* The state of the next process is then
restored to the processor:
— Program counter
— Stack pointer
— Registers

Processes and Threads

Threads are sometimes called lightweight
processes

 Memory:
— Processes have their own, separate memory
— A set of threads will share memory

« Coordination
— Processes will often be independent of one-another

— Threads are typically working together on a common
problem

A Process Example

instantiate
target

allocentric
sensory I
and activation

behavior state map parameters

]I'LfOI’n‘latLOI‘l egocerltric

-~ target expected retinal
: position target position
stationary over move ‘
search over toward attention
arget arget motor target
afferents position image
“(processor
craft
configuration
transition lateral <
) to height ' 7
desired pan/tilt camera
heading me i
i -
control
f :
tactile

I S

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

An Example:
Altitude Control Process

“BURTE” kernel

vold altitude_servo_loop ()
{
set_schedule _interval (10); // 10ms
while (1)
{
collective = Kp * (height_desired - height)
— Kv * height_velocity;

set_collective (collective);

next interval(); // Wait for the next control
// cycle
I
b

An Example:
Starting the Process

main ()

pid = create(altitude_servo_loop, 10, 3000);
start (pid) ;

An Example:
Starting the Process

main ()

pid = create(altitude_servo_loop) 10, 3000);
start (pid) ;

Name of function

An Example:
Starting the Process

main ()

pid = create (altitude_servo_loopOOO);

start (pid) ;

Priority

An Example:
Starting the Process

main ()

pid = create(altitude_servo_loop, 10, ;

start (pid) ;

Size of stack

An Example:
Starting the Process

wte (altitude_servo_loop, 10, 3000);
start (pid) ;

Start the process

Summary

* Process: an piece of code with data and
processor state information

* Multi-processing: switching quickly
between processes

 Process control block: data structure for
process management

Selecting a Process to Execute

Only one process may occupy the processor
at any one time...

throttle

heading

Time

attitude

throttle

translate

Selecting a Process to Execute

A scheduler is responsible for selecting the
next process

* How might we do this?

Scheduling Policies

Only processes in the ready state may be
selected

 Round robin: rotate between the different
processes

 Priority-based: select the highest-priority process
that is ready to execute

« Shortest-process-first: select the one that will
use the processor for the shortest period of time

* Preemption: interrupt an executing process

Evaluating Scheduling Policies

Metrics for evaluation include:

* Response time: time for a process to move
from ready to running

« Turn-around time: time for a process to move
from ready to running and then to leave running

« Throughput: number of processes that can be
executed in a given period of time

» Overhead: the amount of time required by the
operating system to perform scheduling

Evaluating Scheduling Policies

Other key concepts:

» Fairness: all processes get some access
to the processor (and other resources)

 Starvation: a process never gets access
to the processor (because other processes
are occupying it)

Round Robin Scheduling

« Queue: an ordered list of processes that
are in a ready state

» Selecting the next processes: remove the
process from the top of the queue

* Any new processes: add to the end of the
queue

Note: the book defines RR as necessarily
being preemptive. This is not the case

Priority-Based Scheduling

» Each process is assigned an integer
priority

» Selecting the next process: of all the
processes that are ready, pick the one
with the highest priority

Hybrid Scheduler Example

-Have a queue for each distinct priority
evel

Use round robin for the highest priority
gueue

If there are no processes to execute, then
perform round robin between the
processes in the next queue

Repeat

Hell Example

SEIISDTY

stationary
search

activation
behawor state
information

instantiate
target

allocentric
map

egocentric

target
position

move
toward
arget motor

afferents

transition
to height
desired gh
heading

control

craft
configuration

<

map parameters

expected retinal
target position

target
position
™~

lateral
motion

|
pan/tilt

mechanism

attitude
control

N

compass rudder throttle

priority processes

collective

sonars

\\\.\.

inclinometers roll

pitch gyros

\

attention

image
processor

!

camera

tactile
sensor gripper

accelerometers

Processes with strict timing requirements are the highest

Hell Example

instantiate
target

allocentric
sensory I
and activation
behavior state map parameters
information gocentric
target expected retinal
= position target position
stationary over move .
search over toward attention
arget arget motor target
afferents position image

(processor

DV |

transition
to height

pan/tilt camera
et
i attitude <@ grasp
f

[\ X factle
VLN =

compass rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Many processes operate on timescales of seconds

Hell Example

sensory
and

behavior state
information

target
position

motor
afferents

craft
figuration
<

con

lateral

map parameters

target
position
™~

transition
to height i
desired ohieleh Ington
heading
desired
height

attitude
control

|
pan/tilt
e

Coman) o
[\ X

\

expected retinal
target position

attention

image
processor

camera

tactile
sensor gripper

/f

compass

rudder throttle collective sonars inclinometers roll pitch gyros accelerometers

Other processes operate at timescales of 10s of seconds

Shortest-Process-First Scheduling

Select the process that will execute for the
shortest period of time before giving up the
processor

Challenges with this?

Shortest-Process-First Scheduling

Select the process that will execute for the
shortest period of time before giving up the
processor

» How do we know how much time a
process will take? We could:
— Require a process to declare this
— Estimate from past process behavior

« Can lead to starvation of low-priority
processes

Non-Preemptive Scheduling

» So far, we have assumed that a process
has voluntarily given up the processor

 This works if we are careful in our
Implementation

« But —we can have problems if a process
does not “play nice”

Preemptive Scheduling

A process can be forced off the processor
by the operating system

 Typically, a process is given a fixed-
duration timeslice in which to execute

* |f the process does not give up the
processor within this time:

— A different process is given the processor
— The process is returned to the ready state

Hybrid Scheduler |

Combine preemption and priority-based
scheduling

Hybrid Scheduler |

Combine preemption and priority-based
scheduling (“priority preemptive
scheduling”)

» A process can be preempted at any time
by a higher-priority process

Hybrid Scheduler Il|

Combine preemption and priority-based
scheduling

* The number of timeslices that a process is
given within a particular period of time is
proportional to its priority

Rate Monotonic Scheduling

N tasks:
» T. =the period between executions of task |
» E, = worst case execution time

» So: E/T, = the fraction of processor time
required by task i

Scheduling Regular Tasks

In many control systems, tasks (processes)
must be executed at a regular frequency

« How can we be sure that all tasks can be
performed?

Rate Monotonic Scheduling

* Preemptive scheduling

* Process priority is proportional to
execution frequency

RMS Theorem

« Want to know if we can execute all of our
processes

» A set of processes is schedulable if:

Z? <n(2"" -1)

l i

RMS Example

3 processes
« Tmsat 100 Hz
« 10 ms at 20 Hz
« 100 ms at2 Hz

RMS Example

3 processes
« Tmsat 100 Hz
« 10 ms at 20 Hz
« 100 ms at4 Hz

100 *.001+20*.01 +4* .1 <=.7798

Yes!

RMS Example Il

4 processes

* 0.1 ms at 2000 Hz
« 1.5 ms at 120 Hz
« 8 ms at 40 Hz

« 13 msat 10 Hz

RMS Example Il

4 processes

* 0.1 ms at 2000 Hz
« 1.5 ms at 120 Hz
8 ms at 40 Hz

13 ms at 10 Hz

2000 * .0001 + 120 * .0015+40 *.008 + 10 * .013
<= 0.7568

No!

Next Time

Coordination between processes
* Inter-process communication
» Synchronization and mutual exclusion

Last Time

Scheduling

Round Robin
Priority-based
Shorted-Process-First
Preemption

Rate Monotonic Scheduling

Today

* A bit more on scheduling
* Process synchronization

Administrivia

* Project 4 due today @5:00
 Homework 6 due on Tuesday @5:00

* Next Tuesday: virtual guest visit
Jim Montgomery
Robotic Software Systems Group

NASA/Jet Propulsion Laboratory

— Readings posted on D2L

Administrivia Il

* Need office hours tomorrow/Monday?
* Quizzes graded by tomorrow

* Final exam: submit example questions and
answers to the D2L discussion board

Scheduling Regular Tasks

N tasks (processes):
» T. =the period between executions of task |
» E, = worst case execution time

» So: E/T. = the fraction of processor time
required by task |

Key: want a process to complete its it
execution before i+1 enters the ready
queue

An Example Scheduling Problem

T E.
Process 1 100 ms 30 ms
Process 2 250 ms 40 ms
Process 3 1s 60 ms

 All start in the ready queue at time O

« Process 1 is first in the queue (2 is the 2n9)
* Round Robin scheduling

What is the sequence of execution?

Quiz Problem

Scheduling algorithm: priority with
preemption

* Process 1: highest priority
* Process 2: middle priority
* Process 3: lowest priority

Given the same set of processes, what is
the sequence of execution?

Group Quiz Problem #2

Scheduling algorithm: round robin with
timeslices

e Assume 20 ms timeslices

Given the same set of processes, what is
the sequence of execution?

Group Quiz Problem #3

Ti Ei
Process 1 50 ms 25 ms
Process 2 100 ms 40 ms

Scheduling algorithm: priority with
preemption

» Assume Process 1 has highest priority
» Schedule out to 125 ms

Group Quiz Problem #4

Ti Ei
Process 1 50 ms 25 ms
Process 2 100 ms 40 ms

Scheduling algorithm: priority with
preemption

* Assume Process 2 has highest priority

 What choice would Rate Monotonic
Scheduling make about priority?

* Does RMS say that these processes are
necessarily schedulable?

Scheduling

What did we learn?
* Priority matters!

» The Rate Monotonic Scheduling constraint
Is a sufficient condition for schedulability -
but not a nhecessary one

Rate Monotonic Scheduling

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What is the total processor utilization?

Rate Monotonic Scheduling

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

What is the total processor utilization?
90%
Do we pass the RMS constraint?

Rate Monotonic Scheduling

Ti Ei
Process 1 50 ms 25 ms
Process 2 /5 ms 30 ms

Do we pass the RMS constraint?
NO
What is the schedule anyway?

Process Synchronization

So far:

 Allowing many different processes to
share the same processor

* But —we have assumed that these
processes are independent from one
another (not generally the case)

Process Dependence

We have already seen this:

 Project 3: the interrupt routine provided
data (encoder counts) that were used by
the main program

» Serial buffering: the interrupt routine
placed arriving bytes into a common
buffer. These bytes were read out
asynchronously by the main program

Process Dependence

Sharing data structures between is not
always a problem ...

Process Dependence

Sharing data structures between is not
always a problem ...

* |t becomes a problem when one process
can interrupt the other at an arbitrary time

— In particular, in the middle of the modification
or reading of a shared data structure

Process Dependence

Sharing data structures between is not
always a problem ...

* |t becomes a problem when one process
can interrupt the other at an arbitrary time

— In particular, in the middle of the modification
or reading of a shared data structure

— Such as: with interrupt routines or in some
form of preemptive scheduling

A Synchronization Problem

Consider the following code that you
“‘execute”:

1f (noMilk ())

{
buyMilk () ;

A Synchronization Problem

Consider the following code that you “execute”:

if (noMilk ())

{
buyMilk () ;
putMilkInFridge () ;

This works great, but ...

A Synchronization Problem

This works great, but ...

» Suppose your roommate has the same
program

« What can happen?

Synchronization and Milk
Consider the following sequence of events:

Time You Your Roommate
3:00 Arrive at home

3:05 Look in fridge: no milk!

3:10 Leave for store

3:15

3:20 Arrive at store

3:25 Buy milk

3:35 Arrive at home: put milk in fridge

3:45

3:50

Synchronization and Milk
Consider the following sequence of events:

Time You Your Roommate

3:00 Arrive at home

3:05 Look in fridge: no milk!

3:10 Leave for store

3:15 Arrive at home

3:20 Arrive at store Look in fridge: no milk!

3:25 Buy milk Leave for store

3:35 Arrive at home: put milk in fridge

3:45 |
3:50 |

Synchronization and Milk
Consider the following sequence of events:

Time You Your Roommate

3:00 Arrive at home

3:05 Look in fridge: no milk!

3:10 Leave for store

3:15 Arrive at home

3:20 Arrive at store Look in fridge: no milk!

3:25 Buy milk Leave for store

3:35 Arrive at home: put milk in fridge

3:45 Arrive at store; Buy milk

3:50 Arrive at home: put milk in fridge
Error!

Synchronization and Milk

* The processes: you and your roommate

« The common data structure: the
refrigerator

* Asynchronous access to the data
structure:

— You view the state of the fridge at a different
time than when you change its state

Synchronization Concepts

* Mutual exclusion: ensure that only one
process has access to a data structure at
any one time (no matter how many
operations it must perform)

« Synchronization: use of atomic
operators to ensure this safe access to
data structures
— Atomic operator: cannot be interrupted

Synchronization Concepts

» Critical section: a piece of code that can
only be executed by one process at a time

* Lock: (one) mechanism to ensure
exclusive access

— Lock before accessing common data structure
« Must wait if it is already locked
— Access the data

— Unlock

A Solution in Code

lockFridge () ;
if (noMilk ())
{
buyMilk () ;
putMilkInFridge () ;

}
unlockFridge () ;

Solution Notes

Shared resource is locked while it is being
accessed

Must ensure that the resource is unlocked after
completion

Locking implies process waiting

— Can improve this example with a more clever
implementation

Locking/unlocking provided by a library or the
OS

o 0 A~

Additional Questions

Project work contributed to understanding of
the material

Project group was appropriately sized
Project group functioned well

learned something (class-oriented) from a
ab-mate

Readings were helpful in understanding class
material
Class and book (on top of prerequisite

programming class) provided appropriate
pbackground for project work

