
Last Time

• Flip-flops
• Combining flip-flops with combinatorial

logic
• Counter design

Today

• A bit more on flip-flops
• Memory
• Microcontroller essentials

Administrivia

• Homework 3 due on Tuesday
• Lab 1 due in one week

– Demonstration
– Project report (as a group)
– Personal reports

• Reading for today and Tuesday:
– Parts from Chapter 4 (see the schedule)
– J-K Flip-flop web page: “play” with the circuit

NAND Latch

What does this circuit do?

NAND Latch

Consider this initial state

Is this a stable state?

1 0

1 1

Yes!

NAND Latch

What happens with S is set to 0?

0 0->?

1 1->?

NAND Latch

What happens with S is set to 0?

Q becomes 1 (thus S ‘sets’ Q)

0 0->1

1 1->0

NAND Latch

Now S is set 1 – what happens?

1 1->?

1 0->?

NAND Latch

Q and Q’ remain the same!

1 1->1

1 0->1

So Q and Q’ retain a memory of old state!

NAND Latch

Now set R to 0 – what happens?

1 1->?

0 0->?

NAND Latch

Now set R to 0 – what happens?

The state flips back (Q is ‘reset’)

1 1->0

0 0->1

NAND Latch

Finally: set R to 1 – what happens?

1 0->?

1 1->?

NAND Latch

Finally: set R to 1 – what happens?

Q and Q’ do not change state

1 0->0

1 1->1

Timing Diagram Representation

S

R

Q

Q’

?

Timing Diagram Representation

S

R

Q

Q’

Note small delay in response in Q and Q’

Timing Diagram Representation

S

R

Q

Q’

When S returns to high –
both Q and Q’ remain in
the same state

Timing Diagram Representation

S

R

Q

Q’

?

Timing Diagram Representation

S

R

Q

Q’

Q and Q’ flip
state

Timing Diagram Representation

S

R

Q

Q’

How about this case?

Timing Diagram Representation

S

R

Q

Q’

No change in Q and Q’

J-K Flip-Flops

J-K Flip-Flops

No matter what the clock state is:
• S (set): when low, forces Q to 1
• R (reset): when low, forces Q to 0

In general, these are both high

J-K Flip-Flops

When clock transitions from high to low:

Flip state11
101
010

No change00
QKJ

Collections of Bits

• 8 bits: a “byte”
• 4 bits: a “nybble”

• “words”: can be 8, 16, or 32 bits
(depending on the processor)

Memory

What are the essential components of a
memory?

A Memory Abstraction

• We think of memory as an array of
elements – each with its own address

• Each element contains a value
• It is most common for the values to by 8-

bits wide (so a byte)

Memory Operations

Read
foo(A+5);

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.
The result is handed to a function called
foo();

Memory Operations

Write
A = 5;

writes the value 5 into the memory location
referenced by ‘A’

Types of Memory

Random Access Memory (RAM)
• Computer can change state of this

memory at any time
• Once power is lost, we lose the contents

of the memory

• This will be our data storage on our
microcontrollers

Types of Memory

• Read Only Memory (ROM)
– Computer cannot arbitrarily change state of

this memory
– When power is lost, the contents are

maintained

Types of Memory

Erasable/Programmable ROM (EPROM)
• State can be changed under very specific

conditions (usually not when connected to
a comptuer)

• Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Last Time

• R-S Latch (the heart of our flip flops)
• J-K flip flops
• Memory: abstraction and types

Today

• Memory (RAM) Behavior
• Essential microprocessor components

Administrivia

• Homework 3 due @5:00
• Homework 4 out tonight (due in 1 week)
• Project 1 due Thursday @5:00

– Demonstration
– Group report
– Personal reports

Project Grading

• Personal report: assign percent effort to
each group member (including yourself)

• The group receives a grade of G
• Person i gives person k an effort score of

(percent)
• Person k receives the following grade:

�
i

kigG ,*

kig ,

Example: A Read/Write
Memory Module

Inputs:
• 2 Address bits: A0 and A1
• 1 “chip select” (CS) bit
• 1 read/write bit (1 = read; 0 = write)
• 1 clock signal (CLK)

Input or Output:
• Data bit (connected to the “data bus”)

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

How could we implement each memory
element?

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

• 4 1-bit elements

How could we implement each memory
element?

• With a D flip-flop
– (more about this later)

Memory Module Specification

“chip select” signal:
• Allows us to have multiple devices (e.g.,

memory modules) that can write to the bus
• But: only one device will ever be selected

at one time

Memory Module Specification

When chip select is low:
• No memory elements change state
• The memory does not drive the data bus

Memory Module Specification

When chip select is high:
• If R/W is high:

– Drive the data bus with the value that is
stored in the element specified by A1, A0

• If R/W is low:
– Store the value that is on the data bus in the

element specified by A1, A0

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Data bus not driven

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Memory element 2 is
initially in a high state

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

What happens next?

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Chip is selected

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Address memory
element 2

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Specify a write operation

Data bus is driven low
(by another device)

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Clock goes low

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Memory element 2
changes state to low

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Setup time: all
inputs must be valid
during this time

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Hold time: all inputs
must continue to be
valid

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D Data bus is not driven

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

What happens next?

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

On chip select –
drive data bus from
Q2

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

What happens
now?

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

Data bus
returns to a
non-driven
state

Memory (cont)

• Memory is typically organized in groups of
bits (8 is most common)

• For example, an entire byte may be stored
at a particular address

• This means that the data bus is also “8
bits wide” (8 parallel lines)

Components of a Microprocessor

• Registers (fast-access memory)
– General purpose: used for data storage
– Special purpose: used to control the behavior

of the microprocessor and/or the devices
connected to it

• Instruction decoder
– Instructions are the primitive “actions” that the

microprocessor can perform
– Load/store to/from memory, AND, ADD,

JUMP, TEST, …

Components of a Microprocessor

• Arithmetic Logical Unit (ALU)
• Memory control logic
• Timers

– Including timing mechanisms for instruction
fetch and execution

• Interrupt processor

Instruction Fetch/Execution Cycle

• While one instruction is being executed, the next is
already being fetched from memory

• In many cases: each step happens on a single clock
cycle

From Atmel Mega8 spec

Instruction Execution Cycle

Address the registers and wait for the values
to become available

Instruction Execution Cycle

Perform the operation dictated by the
instruction

Instruction Execution Cycle

Result stored in destination register
Status register state changed

An Example: the Atmel Mega8

Atmel Mega8

8-bit data bus
• Primary

mechanism
for data
exchange

32 general
purpose
registers

• 8 bits wide
• 3 pairs of

registers can
be combined
to give us 16
bit registers

Atmel Mega8

Special
purpose
registers

• Control of the
internals of
the
processor

Atmel Mega8

Random Access
Memory (RAM)

• 1 KByte in size

Atmel Mega8

Random Access
Memory (RAM)

• 1 KByte in size

Note: in high-end
processors,
RAM is a
separate
component

Atmel Mega8

Flash (EEPROM)
• Program

storage
• 8 KByte in size

Atmel Mega8

Flash (EEPROM)
• In this and many

microcontrollers,
program and data
storage is separate

• Not the case in our
general purpose
computers

Atmel Mega8

EEPROM
• Permanent

data storage

Atmel Mega8

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega8

Machine-Level Programs

Machine-level programs are stored as
sequences of machine instructions

• Stored in program memory
• Execution is generally sequential

(instructions are executed in order)
• But – with occasional “jumps” to other

locations in memory

Types of Instructions

• Memory operations: transfer data values
between memory and the internal registers

• Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

• Tests: value == 0, value > 0, etc.
• Program flow: jump to a new location,

jump conditionally (e.g., if the last test was
true)

Program
counter

• Address of
currently
executing
instruction

Atmel Mega8: Decoding Instructions

Instruction
register

• Stores the
machine-level
instruction
currently being
executed

Atmel Mega8: Decoding Instructions

Instruction
decoder

• Translates
current
instruction into
control signals
for the rest of
the processor

Atmel Mega8

Status register
• Many machine

instructions
affect the state
of this register

Atmel Mega8

Mega8 Status Register

Interrupt enable
• If ‘1’, the currently executing program can be

interrupted by another event (e.g., a byte
arriving through the serial port)

Mega8 Status Register

Half carry flag
• Set if an arithmetic operation resulted in a

carry from the first nybble to the next

Mega8 Status Register

Two’s complement overflow flag
• Set if an arithmetic operation resulted in an

overflow in two’s complement (e.g., incrementing
an 8-bit number whose value is 127)

Mega8 Status Register

Negative flag
• Set if an arithmetic operation resulted in a

negative value

Mega8 Status Register

Zero flag
• Set if an arithmetic operation resulted in a

value of zero

Mega8 Status Register

Carry flag
• Set if an arithmetic operation resulted in a

carry (with an unsigned value)

Next Time

• Microprocessors in practice
– Coding
– Digital I/O

• Readings:
– Make sure that you are caught up on the

Chapter 4 readings
– Embedded C Programming: C Review and

Architecture Sections (see schedule)

