Last Time

 Flip-flops

« Combining flip-flops with combinatorial
logic

« Counter design

Today

A bit more on flip-flops
* Memory
 Microcontroller essentials

Administrivia

 Homework 3 due on Tuesday

« Lab 1 due in one week
— Demonstration
— Project report (as a group)
— Personal reports

» Reading for today and Tuesday:

— Parts from Chapter 4 (see the schedule)
— J-K Flip-flop web page: “play” with the circuit

NAND Latch

What does this circuit do?

=

| ¥

NAND Latch

Consider this initial state

)

fi=p!

|s this a stable state?

Yes!

Q0

NAND Latch

What happens with S is set to 07?

S
0 D@ Q 0->?
1 R D@ Q 1->7?

NAND Latch

What happens with S is set to 07?

S
0 DC Q 0->1
| R D@ Qo 1->0

Q becomes 1 (thus S ‘sets’ Q)

NAND Latch

Now S is set 1 — what happens?

b

Al

Q 1->7?

Q 0->?

NAND Latch

Q and Q’ remain the same!

S
1 DC Q 1->1
| R D@ Q 0->1

So Q and Q' retain a memory of old state!

NAND Latch

Now set R to 0 — what happens?

)

o])

Q 1->7?

Q 0->?

NAND Latch

Now set R to 0 — what happens?

S
1 DC Q 1->0
o R D@ Q 0->1

The state flips back (Q is ‘reset’)

NAND Latch

Finally: set R to 1 — what happens?

S
1 DC Q 0->?
R D@ Q 1->7?

NAND Latch

Finally: set R to 1 — what happens?

S
1 DC Q 0->0
1 R D@ Q 1->1

Q and Q’ do not change state

Timing Diagram Representation

Timing Diagram Representation

Note small delay in response in Q and Q’
S 1 y P

|

R \
Q /o
-

Q!

Timing Diagram Representation

s ./
When S returns to high —

R both Q and Q' remain in
the same state

Timing Diagram Representation

s _/
R N/
Q /

Timing Diagram Representation

s __/
R N/

Q and Q' flip
Q / \ state

Timing Diagram Representation

s __/ NV

Q / How about this case?

Timing Diagram Representation

s _/ N/

No change in Q and Q’

J-K Flip-Flops

wn(O—

=~ N =

o

l

—Q=

J-K Flip-Flops

No matter what the clock state is:
« S (set): when low, forces Q to 1
* R (reset): when low, forces Qto 0

In general, these are both high

=~ N =

l

—(Q=

J-K Flip-Flops

When clock transitions from high to low:

J K Q (B
0 0 No change
1S o
0 1 0
1 0 1 b
1 1 Flip state —

Collections of Bits

8 bits: a “byte”
* 4 bits: a “nybble”

* “words”: can be 8, 16, or 32 bits
(depending on the processor)

Memory

What are the essential components of a
memory?

A Memory Abstraction

» We think of memory as an array of
elements — each with its own address

« Each element contains a value

* |t is most common for the values to by 8-
bits wide (so a byte)

0x32 | OxF1 | Ox11 | Ox67

...... Ox7B

0 1 23 M_|

Memory Operations

Read
foo (A+5) ;

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.

The result is handed to a function called
foo();

Memory Operations

writes the value 5 into the memory location
referenced by ‘A’

Types of Memory

Random Access Memory (RAM)

« Computer can change state of this
memory at any time

* Once power is lost, we lose the contents
of the memory

» This will be our data storage on our
microcontrollers

Types of Memory

* Read Only Memory (ROM)

— Computer cannot arbitrarily change state of
this memory

— When power is lost, the contents are
maintained

Types of Memory

Erasable/Programmable ROM (EPROM)

« State can be changed under very specific
conditions (usually not when connected to
a comptuer)

» Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Last Time

» R-S Latch (the heart of our flip flops)
« J-K flip flops
* Memory: abstraction and types

Today

 Memory (RAM) Behavior
» Essential microprocessor components

Administrivia

Homework 3 due @5:00
Homework 4 out tonight (due in 1 week)

Project 1 due Thursday @5:00
— Demonstration

— Group report

— Personal reports

Project Grading

Personal report: assign percent effort to
each group member (including yourself)

The group receives a grade of G

Person i gives person k an effort score of

g.. (percent)
Person k receives the following grade:

G*Zgi,k

Example: A Read/Write
Memory Module

Inputs:

« 2 Address bits: A0 and A1

» 1 “chip select” (CS) bit

* 1 read/write bit (1 = read; 0 = write)
1 clock signal (CLK)

Input or Output:
 Data bit (connected to the “data bus”)

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address”?

How could we implement each memory
element?

Implementing A Read/Write
Memory Module
With 2 address bits, how many memory
elements can we address?
* 4 1-bit elements

How could we implement each memory
element?

* With a D flip-flop
— (more about this later)

Memory Module Specification

“chip select” signal:

 Allows us to have multiple devices (e.g.,
memory modules) that can write to the bus

» But: only one device will ever be selected
at one time

Memory Module Specification

When chip select is low:
 No memory elements change state
* The memory does not drive the data bus

Memory Module Specification

When chip select is high:

+ If R/W is high:

— Drive the data bus with the value that is
stored in the element specified by A1, AO

* |[f R/W is low:

— Store the value that is on the data bus in the
element specified by A1, AO

Memory Timing Diagram

Memory Timing Diagram

CLK _____Data bus not driven

Memory Timing Diagram
e O
N4 \
A0
RW. _
cs /
CLK N

D N

Memory element 2 is
initially in a high state

Memory Timing Diagram

What happens next?

Memory Timing Diagram

Q2
M/
A0
R/w:—_/ Chip is selected
cs LD

CLK N

D \

Memory Timing Diagram

Address memory

e\ element 2

Memory Timing Diagram

Q2 -

Al

A0

R/w:—Q — Specify a write operation
cs _/

CLK —— Data bus is driven low

D :—@ — (by another device)

Memory Timing Diagram

<)L
Q) ——Clock goes low

Memory Timing Diagram

Q2

N

A

A/

A0

R/W \

cs _/

CLK

Memory element 2
changes state to low

Memory Timing Diagram

Q2 EEEEEN
Ao/ |
] P Setup time: all
AD _— inputs must be valid
R/W. 1 during this time
cs _/
CLK

L EEEEPEEEREE

O
g

Memory Timing Diagram

Q2 -
Al /
A0

RIW \
cs_ _/

CLK

//

I

Hold time: all inputs
must continue to be
valid

L EEEEPEEEREE

O
g

Memory Timing Diagram ||

Memory Timing Diagram ||

CLK
D N — Data bus is not driven

Memory Timing Diagram ||

CLK

What happens next?

Memory Timing Diagram ||

On chip select —

RW / drive data bus from

Q2

Memory Timing Diagram ||

) What happens

now?

Memory Timing Diagram ||

Q2
AL/
AO Data bus

_ returns to a
RW___/ non-driven
cs / N state

CLK X

Memory (cont)

* Memory is typically organized in groups of
bits (8 is most common)

* For example, an entire byte may be stored
at a particular address

 This means that the data bus is also “8
bits wide” (8 parallel lines)

Components of a Microprocessor

» Registers (fast-access memory)
— General purpose: used for data storage

— Special purpose: used to control the behavior
of the microprocessor and/or the devices
connected to it

e |nstruction decoder

— Instructions are the primitive “actions” that the
microprocessor can perform

— Load/store to/from memory, AND, ADD,
JUMP, TEST, ...

Components of a Microprocessor

Arithmetic Logical Unit (ALU)
Memory control logic

Timers

— Including timing mechanisms for instruction
fetch and execution

Interrupt processor

Instruction Fetch/Execution Cycle

T1 T2 T3 T4

ok —4 N/ _ 7 _/

CPU
1st Instruction Fetch ——<

1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

N

V4
Vd
™~

N

d
i
™~

N

s
d
™~

From Atmel Mega8 spec

« While one instruction is being executed, the next is
already being fetched from memory

« In many cases: each step happens on a single clock
cycle

Instruction Execution Cycle

T1 T2 T3 T4

AP A N A N A N A N

CPU

| |
| |
| |
1 |
| |
Total Execution Time — > : :
| | |
Register Operands Fetch — > : :
| | |
ALU Operation Execute <) : '
| | |
i | /—l—\ | |
Result Write Back . .
u | | ;I_/' | I
| | |

Address the registers and wait for the values
to become available

Instruction Execution Cycle

T1 T2 T3
[I

clkcpy
Total Execution Time —(

T4

N/

Register Operands Fetch —C}

ALU Operation Execute

I
Result Write Back /

Perform the operation dictated by the
iInstruction

Instruction Execution Cycle

T1 T2 T3
[I

ckepy
Total Execution Time ——<

T4

N/

|
Register Operands Fetch — >
|

ALU Operation Execute : < —
|

|
Result Write Back ' 4 D

Result stored in destination register
Status register state changed

Atmel Mega8

Data Bus 8-bit

An Example: the
«

Program Status
Flash - Ea o
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General s
Register Purpose B SP|
Registrers v Unit
3
Instruction Watchdo
Decoder y Y i Timer °
o g N
l £ 3
w w
& £ ALU i Analog
Control Lines = pe. Comparator
s 5
=) o
@ 4
= 'E
Q = /O Module1
Data ;
el — i/O Module 2
SRAM -
— /O Module n
EEPROM B
I/0 Lines ot

Atmel Mega8

8-bit data bu

Flash
Program
Memory

il

e

Program
Counter

Data Bus 8-bit

Status
and Control

;

* Primary

Instruction
Register

3

mechanism

Instruction
Decoder

for data
exchange

'

Control Lines

Direct Addressing

Indirect Addressing

32x8B
General
Purpose
Registrers

EEPROM

1/O Lines

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

IO Module1

i/O Module 2

i/O Module n

Data Bus 8-bit

Atmel Mega8
«

32 general
purpose T
registers ‘ W
* 8 bits wide] TR val—

Direct Addressin
Indirect Addressin

« 3 pairs of
registers can

[/0 Module1

be COmbIﬂed o ohny jesfer| /0 Module2

to glve US 16 . | /0 Module n

bit reqgisters

1/O Lines i}

Atmel Mega8
«

Special
purpose
registers

Program
Counter

Data Bus 8-bit

Status
and Control

Instruction
Register

Instruction
Decoder

« Control of the
Internals of
the
Processor

'

Control Lines

Direct Addressing

Indirect Addressing

Interrupt
32x8 f—ine Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
4 4 - Timer
N/
ALU
— Analog
Comparator
/O Modulet
Data e /O Module 2
SRAM e
— /O Module n
EEPROM of
1/O Lines "t

Atmel Mega8
«

Random Access
Memory (RAM)

» 1 KByte in size

Data Bus 8-bit

:

Flash ™
Program

Program
Counter

Memory =

;

Instruction
Register

Control Lines

Indirect Addressing

Status
and Control
Interrupt
32x8 Unit
General
Purpose bl SP|
Registrers v Unit
‘u"_ul’_iatchclog
imer
N/
Analog
Comparator
i"O Module1
i'O Module 2
i/O Module n

1/O Lines "t

Atmel Mega8
«

Random Access
Memory (RAM)

» 1 KByte In size

Note: in high-end
Processors,
RAM is a
separate
component

Data Bus 8-bit

Program Status
Flash ki e
Program Counter and Control
Memory
l Interrupt
32x8 Unit
Instruction General
Register Purpose SP|
Regist Unit
! + Watchdog
eee Tirmer
(=]
w w
& £ Analog
Control L = Comparator
k3]
s
B=
£ i/O Module1
i/O Module 2
i/O Module n

Atmel Mega8
«

Data Bus 8-bit

:

Flash (EEPROM

Flash
Program
Memory

Program
Counter

* Program

Instruction
Register

3

storage

Instruction
Decoder

» 8 KByte In size

'

Control Lines

Direct Addressing

Indirect Addressing

Status
and Control
Interrupt
32x8 Unit
General s
Purpose bl SP|
Registrers v Unit
Watchdog
4 3 =% Timer
N/
ALU
— Analog
Comparator
/O Modulet
< Data e /O Module 2
SRAM e
— /O Module n
EEPROM of
1/O Lines n

Atmel Mega8
«

Flash (EEPROM)

* In this and many
microcontrollers,
program and data

storage is separate e
 Not the case in our

general purpose
computers

Data Bus 8-bit

Flash
Program
Memory

Program
Counter

Instruction
Register

3

Instruction
Decoder

Direct Addressing

Indirect Addressing

Status
and Control >
Interrupt
32x8 Unit
General 5
Purpose B SPI
Registrers i Unit
Watchdog
2 il i Timer
N/
ALU
“— Analog
Comparator
[/0 Module1
Data .
/O Module 2
SRAM e — | u
— /O Module n
EEPROM a4
1/O Lines o

Data Bus 8-bit

Atmel Mega8
«

:

EEPROM

e Permanent

data storage

Program Status
Flash - o o
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General s
Register Purpose B SP|
o Registrers o Unit
3
Instruction Watchdog
- 4 3 =% Timer
[73) w
17 o ALU
© = Analog
bl 3 = Comparator
E <
= T
[[oF]
@ =
= 'E]
= £ *—®l /0 Module1
Data ;
— /O Module 2
SRAM G
P W
— /O Module n
1/0 Lines t

Data Bus 8-bit

Atmel Mega8
«

]
Arithmetic anter nd Control [*™
Logical Unit o | M
» Data inputs g

nstruction
" eace) Timer
from registers l .' '
@ g —p Analog
Control Lines Comparator

» Control inputs
not shown

Direct Add
Indirect Add

[/0 Module1

(derived frOm > sfﬁ?m sl /0 Module 2

Instruction | S

decoder)

1/O Lines <

Machine-Level Programs

Machine-level programs are stored as
sequences of machine instructions

« Stored in program memory

» Execution is generally sequential
(Instructions are executed in order)

» But — with occasional “jumps” to other
locations in memory

Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jump conditionally (e.g., if the last test was
true)

Atmel Mega8: Decoding Instructions

Program
counter

» Address of
currently
executing
instruction

Data Bus 8-bit

Instruction
Register

Program
Counter

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Status
and Control
Interrupt
32x8 f—ine Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
4 Y =% Timer
N/
ALU
— Analog
Comparator
/O Modulet
Data e /O Module 2
SRAM e
— /O Module n
EEPROM of
1/O Lines n

Atmel Mega8: Decoding Instructions
P 1

Instruction] Lo
register —— |

« Stores the —T ==

: 2 £ N —

machine-level | \f W ey
instruction W
currently being T o Ll
executed A e

Data Bus 8-bit

Atmel Mega8
«

|nstruc’[ion Counter | and Control [*™™
decoder g W B

* Translates — 71 |
current — g8\ f =
instruction into e
control signals | e

a—pd—» /O Module 2

for the rest of o

the processor

1/O Lines "t

Atmel Mega8
«

Data Bus 8-bit

:

Status register

Flash B

Program
Memo

 Many machine

Instruction
Register

Program
Counter

Status
and Control

3

instructions

Instruction
Decoder

affect the state
of this register

'

Control Lines

Direct Addressing

Indirect Addressing

Interrupt
32x8 —pr Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
y =3 Timer
N/
ALU
— Analog
Comparator
/0 Modulet
0 Data a—»| /0 Module 2
SRAM G
— /O Module n
EEPROM 0
/O Lines -t

Mega8 Status Register

Bit Fi 6 4]) 3 2 1 0

I A N T A L T_] sne
Read/Write R/W RW BRW HW BW RW RW R/W
Initial Value 0 0 0 0 0 0 0 0

f

|
Interrupt enable
 If ‘17, the currently executing program can be

interrupted by another event (e.g., a byte
arriving through the serial port)

Mega8 Status Register

Bit Fi 6 4]) 3 2 1 0

I A N A T_] sne
Read/Write R/W RW BRW HW BW RW RW R/W
Initial Value 0 0 0 0 0 0 0 0

f

|
Half carry flag

» Set if an arithmetic operation resulted in a
carry from the first nybble to the next

Mega8 Status Register

Bit Fi 6 4]) 3 2 1 0
T 7] C] srec

Read/Write R/W RW BRW HW BW RW RW R/W

Initial Value 0 0 0 0 0 0 0 0

Two’s complement overflow flag

« Set if an arithmetic operation resulted in an
overflow in two’'s complement (e.g., incrementing
an 8-bit number whose value is 127)

Mega8 Status Register

Bit Fi 6 4]) 3 2 1 0
! [T | . s | VvV | N | z | C | SREG
Read/Write RW R'W R'W RW R'W R'W R'W RW
Initial Value 0 0 0 0 0 0 0 0
Negative flag

« Set if an arithmetic operation resulted in a
negative value

Mega8 Status Register

Bit 7 B 5 1

4 3 2 0
-1 [&] s | v | N [Z | C SREG
Head/Write BRW BwW BwW BRW BwW BW RW RW

Initial Value 0 0 0 0 0 0 0 0

Zero flag

« Set if an arithmetic operation resulted in a
value of zero

Mega8 Status Register

Bit 1

Fi B 4] S 3 2 0
! | ¥ | K | 5 | ¥ | N | C__|] SREG
Head/Write HW RW HW HW HW HW HW HW

Initial Value 0 0 0 0 0 0 0 0

Carry flag

« Set if an arithmetic operation resulted in a
carry (with an unsigned value)

Next Time

» Microprocessors in practice
— Coding
— Digital 1/0

» Readings:
— Make sure that you are caught up on the
Chapter 4 readings

— Embedded C Programming: C Review and
Architecture Sections (see schedule)

