Last Time

Microprocessors Basics

Busses

Memory behavior

Arithmetic Logical Units (ALUs)
Fetch-Execute cycle

Registers: general-purpose versus
special-purpose



Today

» Bit Masking

» Atmel Mega8 practicalities
— Circuit design
— Coding
— Programming



Administrivia

* Lab 1 Due today @5:00
— 2 groups left to demonstrate
— Group report
— Personal reports

 Pointers to circuit drawing programs are
on D2L

— Please add your own pointers



Atmel Mega8 Basics
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Atmel Mega8 Basics
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Atmel Mega8 Basics
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Atmel Mega8 Basics
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Atmel Mega8 Basics
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PDIP

(RESET) PC6 [
(RXD) PDO [

(TXD
INTO

NT

(
(1
(XCK/T0) PD4 [

PD1 [
PD2 []

PD3 L[

)
)
)
)
1)
)

vCC L[

(XTAL1/TOSC
(XTAL2/TOSC

GND []
1) PB6 C
2) PB7 [

(AINO) PD6 [

(AIN
(ICP

—n—tvmwmmhmm—m
I\J_l

13

1)
() PBO [

S

[ 1PC5
1 PC4
[ 1PC3
[ 1PC2
1 PC1

1 PCO
1 GND
1 AREF

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC2)
ADCH1)
ADCO)

— — p— p— p— p—

PB5 (SCK)

1 PB4 (MISO)

1 PB3 (MOSI/OC2)

1 PB2 (SS/OC1B)
(

] PB1 (OC1A




Atmel Mega8 Basics

PORT C
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Atmel Mega8 Basics

PORT D
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A First
Circuit
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/O Pin Implementation

A
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RPx: READ PORTx PIN



/O Pin Implementation

The physical
pin
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/O Pin Implementation

DDRB

 Defines
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/O Pin Implementation

PORTB A (= |
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DATA BUS

PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

Tristate buffer < (= l
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/O Pin Implementation

A

Input flip-flop A=< = l
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RPx: READ PORTx PIN



Bit Manipulation

PORTB is a register

« Controls the value that is output by the set
of port B pins

« But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually



Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;

The corresponding bits of A and B are
ANDed together



Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;



Bit-Wise Operators

01011110 A

10011011 B

? C=A&B



Bit-Wise Operators

OHH111® A

10011OWV B

C=A&B



Bit-Wise Operators

01011116\ A
1001101\1/ B
v

0 C=A&B



Bit-Wise Operators

O10111A\p A

100110\1/1 B




Bit-Wise Operators

01011110 A

10011011 B

00011010 C=A&B



Bit-Wise Operators

Other Operators:
* OR: |
« XOR: A



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 07



Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A & OxFB;



A First
Program

Flash the
LEDs at a
regular
iInterval

« How do we
do this?
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A First
Program

How do we
flash the LED
at a regular
interval?

* We toggle the
state of PBO
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A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

}



A First Program
mazZT {
= OxFF; // Set all port B pins as outputs

whi\le (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
elay_ms (500) ; // Pause for 500 msec

A predefined “variable” (register) that
controls whether the port B pins are
digital inputs or outputs (more on this
later)



A First Program

main () {
DDRB

OxFF; // Set all port B pins as outputs

= PORTB ~ 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

Loop forever



A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB =\PORTB/" 0x1; // XOR bit 0 with 1
delay_ms (J00) ; // Pause for 500 msec

}

|
Another predefined variable: the value

being written to port B



A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

whilg

PORTB ~ 0x1; // XOR bit 0 with 1
deJay_ms (500) ; // Pause for 500 msec

Change the value being written to port B



A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB@ Ox1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

}

Bit-wise XOR operator



A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
P = ~ 0x1; // XOR bit 0 with 1
delay_ms (500) // Pause for 500 msec

}

Program pauses for 500 msec. This function is
defined elsewhere.



A Second Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

What does this program do?



A Second Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

Flashes LED on PB1 at 2 Hz
on PB0: 1 Hz



Last Time

Atmel microcontroller

* |/O pins

* Digital port implementation
* Digital output in code

Bit-wise operators



Today

A “bit” more on bit masking/manipulation
Digital input in code

Practical issues in programming your
mega8

Homework 3
Finite state machines



Administrivia
Homework 4 due tonight at 5:00

Thursday: Finite state machines and
project 2

Tuesday (next week): FSM continued and
midterm review

Thursday: midterm

Spring break: the lab will be open on a
limited basis (let me know if you want
access)



More Bit Masking

* Suppose we have a 3-bit number (so
values 0 ... 7)

* Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

» How do we express this in code?



Bit Masking in Practice

Suppose you have connected your 3 robot
control lines to B3, B4, and B5.

Suppose also that you have connected
your 2 turret control lines to B6 and B7

Our robot control lines are specified as
numbers 0 ... 6

How do we change the state of B3...B5
without changing the turret command?



Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to_robot;
PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5



Bit Masking
M 1 et
<E§%?3::(D§E§> // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short 1s 8-bits wide

val = comm&nd_to_robot;

PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val\& 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5)

}
B3-B7 are outputs; all others are still inputs (could

be different depending on how other pins are used)



Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;

// Set the current B3-B5 to 0Os
// OR with new values (shifted
// to fit within B3-B5

PORTB

“Mask out” the current values of pins B3-
B5 (leave everything else intact)



Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;
PORT (PORLB & // Set the current B3-B5 to Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

Substitute an arbitrary value into these
bits



Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;
(PORTB & 0xCT7) // Set the current B3-B5 to O0Os
(val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

And use the result to change the output
state of port B



Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = (val & 0xCO) >> o6;



Reading the Digital State of Pins
Imzégg {:(b§§i> // Set pins B3, B4, B5 as outputs

All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = & 0xCO) >> 6;

B6 and B7 are configured as inputs



Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

Qal = PINB;

outval = (vyl & 0xCO) >> 6;

Read the value from the port



Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

outval =\(val & 0xCO) J>> 6;
} 7

“Mask out” all bits except B6 and B7




Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

}

Right shift the result by 6 bits — so the value of B6
and B7 are now in bits 0 and 1 of “outval”



Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional |  Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND




A Note About the Atmel Book

The book uses C syntax that looks like this:
PORTA.O0 = 0; // Set bit 0 to 0

This syntax is not available with our C
compiler. Instead, you will need to use:

PORTA &= OxFE;

or
PORTA = PORTA & OxFE;



Putting It All Together

* Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

* Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
it from your circuit



Physical Interface for Programming

AVR ISP




Physical Interface for Programming

AVR ISP

e Bl ]

Serial
connection to
your computer /




Physical Interface for Programming

AVR ISP

Header
connection wi
connect to
your circuit
(through an
adapter)



A More Complicated Circuit
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A More Complicated Circuit

« Connect
through
adapter to
AVR ISP

Do not
reverse the
pins!

AVR IP
Connedyor
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A More Complicated Circuit

Extra LED (

WW—
200 0hm 7
allows you to )\/

see when a
program is
being
downloaded
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A More Complicated Circuit

16 MHz crystal
. LC 200 ohm
« Optional! AN T A
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Compiling and Downloading Code

 Create a “makefile” and a C source file In
some personal directory

— Start with copies from the “Atmel HOWTO”
part of the web page

« Change the TARGET line in makefile to
match the name of your source file

» Change your source file



Compiling and Downloading Code

From the windoze menu: select “Start” and
then “run”

Type “cmd”. This will bring up a “shell”
interface (a command line)

“cd” (change directory) to your directory

Type “make”. Deal with any errors or
warnings (both are there for a reason)

Type “make program”



Compiling and Downloading Code

* Once the chip is programmed, the AVR
ISP will automatically reset the processor;
starting your program



Hints

» Use LEDs to show status information (e.g.,

to indicate what part of your code is being
executed)

« Have one LED blink in some unique way
at the beginning of your program

* Go slow:
— Implement and test incrementally

— Insert plenty of pauses into your code (use
delay_ms())



Configuring the Clock

« By default, the mega8 chips are configured for 1
MHz operation

* To reconfigure for 16 MHz:

— Add the crystal + capacitors

— Use ‘make setfuse’ to tell the chip that it has a crystal
(you will only need to do this once)

* |If you configure your code to run at 16 MHz, and
things seem to be running slow, then you
probably need a ‘make setfuse’



Final Notes

* You will need some additional circuitry to
program your processor

 There are a few more details in the code

-> See the examples posted on the net



Next Time

* Finite state machines
* Project 2



