Last Time

Microprocessors Basics

Busses

Memory behavior

Arithmetic Logical Units (ALUs)
Fetch-Execute cycle

Registers: general-purpose versus
special-purpose

Today

» Bit Masking

» Atmel Mega8 practicalities
— Circuit design
— Coding
— Programming

Administrivia

* Lab 1 Due today @5:00
— 2 groups left to demonstrate
— Group report
— Personal reports

 Pointers to circuit drawing programs are
on D2L

— Please add your own pointers

Atmel Mega8 Basics

[
Clomplete, stand- v
d
one com pu’[er (RESET) PC6 [] 1 ~ 28 [1PC5 (AD
. _ . (RXD) PDO [S
OU s is a 28-p| . s 2 27 [d PC4 (ADC4/SDA)
paCka eschiedts) 26 [1 PC3 (ADC3)
ge 25 [1PC2 (A
(INT1) PD3[]5 24 P
MQS’[_ - (XCK/TO) PD4 6 mi el
p| ns: oege 23 [d PCO (ADCO)
22 [1GND
B GN
Are used for (XTAL1/TOSCH1) PB[E;EZ 21 Vo
inpu tou tpu f (XTAL2/TOSC2) PB7 [] 10 18 g,gvcc
(T1) PD5] 11 18 o]
_ HOW they are used (AINO) PD6 [] 12 17 gggg Emfgﬁ
o Configurab| (AIN1) PD7 [] 13 16 1 .
o p; PB2 (SS/OC1B
(ICP1) PBO[] 14 151 PB1 (OC1A))

Atmel Mega8 Basics

. PDIP
Power (we will use -
(RESET) PC6 [] 1 28 [1PC5 (ADC5/SCL)
+5 V) (RXD) PDO]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1[]3 26 [1 PC3 (ADC3)
(INTO) PD2 [] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
mﬁe 23 [0 PCO (ADCO)
VCC [22 L1GND
8 21 L1 AREF
(XTAL1/TOSC1) PB6]9 20 [J AvCC
(XTAL2/TOSC2) PB7 [] 10 19 [PB5 (SCK)
(T1) PD5] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 |1 PB2 (SS/0C1B)
(ICP1) PBO] 14 15 [1PB1 (OC1A)

Ground

(RESET
(RXD
(TXD

INTO

e e T

CK/TO)

(GND C 8)
(XTAL1/TOSCH 9

(XTAL2/TOSC2
(T1

(AINO

(AIN1

(ICP1

— St e e e e

Atmel Mega8 Basics

PDIP
N/
PC6 []1 28 [0 PC5 (ADC5/SCL)
PDO]2 27 [0 PC4 (ADC4/SDA)
PD1[]3 26 [1PC3 (ADC3)
PD2[]4 25 1 PC2 (ADC)
5 24 [1PC1 (ADC1)

P46~ (ADCO)

22 [1GND)

5 EF

20 D AVCC
PB?’] 10 19 [1 PB5 (SCK)
PD5 [] 11 18 [PB4 (MISO)
PD6 []12 17 |3 PB3 (MOSI/OC2)
PD7 []13 16 [1 PB2 (SS/OC1B)
PBO [] 14 15 [PB1 (OC1A)

Atmel Mega8 Basics

Reset _

PDIP

Bring low to reset
the processor

In general, we will
tie this pin to high
through a pull-up

resistor (10K ohm)

—((RESET) PC6 []

[S]

(XTAL1/TOSCH
()(TAL2/TOSC2

S

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1PC5
T PC4
1 PC3
1 PC2
1 PCH
1 PCO
1GND
] AREF
AVCC
1 PB5 (SCK)
1 PB4 (MISO)
1 PB3 (MOSI/OC2)
(SS,
(

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC2)
ADCH1)
ADCO)

P e . s T T

1 PB2 (SS/0C1B)
1PB1 (OC1A)

Atmel Mega8 Basics

PORT B

PDIP

(RESET) PC6 [
(RXD) PDO [

(TXD
INTO

NT

(
(1
(XCK/T0) PD4 [

PD1 [
PD2 []

PD3 L[

)
)
)
)
1)
)

vCC L[

(XTAL1/TOSC
(XTAL2/TOSC

GND []
1) PB6 C
2) PB7 [

(AINO) PD6 [

(AIN
(ICP

—n—tvmwmmhmm—m
I\J_l

13

1)
() PBO [

S

[1PC5
1 PC4
[1PC3
[1PC2
1 PC1

1 PCO
1 GND
1 AREF

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC2)
ADCH1)
ADCO)

— — p— p— p— p—

PB5 (SCK)

1 PB4 (MISO)

1 PB3 (MOSI/OC2)

1 PB2 (SS/OC1B)
(

] PB1 (OC1A

Atmel Mega8 Basics

PORT C

PDIP

T
(RESET) PC6
2
(TXD) PD1] 3
(INTO) PD2 [4
(INT1) PD3[]5
(XCK/TO) PD4 [6
vee 7
GND[]8 21 [J AREF
(XTAL1/TOSC1) PB6]9 20 O AvCC
(XTAL2/TOSC2) PB7 [] 10 19 |1 PB5 (SCK)
(T1) PD5] 11 18 [1 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [] 13 16 |1 PB2 (SS/OC1B)
(ICP1) PBO [] 14 15 [1 PB1 (OC1A)

Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP
T
(RE 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO 27 [0 PC4 (ADC4/SDA)
(TXD) PD1] 3 26 [1PC3 (ADC3)
(INTO) PD2 [4 25 [1PC2 (ADC2)
(INT1) PD3 [24 [1PC1 (ADC1)
K/TO) PD4 23 [0 PCO (ADCO)
7 22 [1GND
GND[]8 21 [J AREF
(XTAL1/TOSC1) PB6]9 20 O AvCC
(XTAL2/TOSC 10 19 |1 PB5 (SCK)
(T1) PD5] 1 18 [1 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
AIN1) PD7] 1 16 [0 PB2 (SS/0C1B)
(ICPT) PBO] 14 15 [1 PB1 (OC1A)

A First
Circuit

28 27 26 25 24 23 22

21 20 19 18 17 16 15

ANEEEEEREEEE]

IEENEEEEERENEEE

PC5 PC3 PCl1
PC4 PC2 PCO

) Atme

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2

VCC PB6 PD5S PD7

AREF PB5 PB3 PBI

1 Mega8

GND PB7 PD6 PBO

HERERERERENE
12 3 45 6 7

i ’

IJNREREEEREEEEN
8 9 10 1T 12 13 14

+S5V 200 ohm

/O Pin Implementation

A

Single bit of < . |

° D le
PO RT B UT<—|_ -

RESET

A
VY
|
O
>

o SLEEP r RRx

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

The physical
pin

A

<

PUD

(=

l & o D q'

DDxn

T, 9
| _|— WDx

RESET

JA

SLEEP

PUD: PULLUP DISABLE
SLEEP: SLEEP CONTROL
clk,q: IO CLOCK

I D Q
I |— L T [> [+] I
I_ ———— _: clk o
WDx: WRITE DDRx
RDx: READ DDRx
WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

DDRB

 Defines
whether
this Is an

Pxn

PUD

—<

AAA
LA A J

(=

Input or an
output

L~
& . 4 rd! ’ N * o D
N PORTxn <
Gu.n <
| _l— WPx
RESET
) SLEEP r RRx
V
SYNCHRONIZER
e e] RPx
I oD @ D O _I_V
I PINxn I
I |— L T P> =
I } clkyo
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEF: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

PORTB A (= |

* Defines the
value that
s written _
out to the
pin (if it is :

an output) st —
e
L{ et R

DATA BUS

PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

Tristate buffer < (= l

 When this
pin Is an
output pin, it

allows the = . ,
PORTB flip- g
flop to drive - —

DATA BUS

. L
the pln SYNCHRONIZER
—_————— — RPx
I D a D C _I_V
I PiNxn I
I |_L ks [> (o]
I_ ———— _: clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPXx: WRITE PORTx
clk,o; VO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

A

Input flip-flop A=< = l

_|— WDx

Pxn

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

Bit Manipulation

PORTB is a register

« Controls the value that is output by the set
of port B pins

« But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually

Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;

The corresponding bits of A and B are
ANDed together

Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;

Bit-Wise Operators

01011110 A

10011011 B

? C=A&B

Bit-Wise Operators

OHH111® A

10011OWV B

C=A&B

Bit-Wise Operators

01011116\ A
1001101\1/ B
v

0 C=A&B

Bit-Wise Operators

O10111A\p A

100110\1/1 B

Bit-Wise Operators

01011110 A

10011011 B

00011010 C=A&B

Bit-Wise Operators

Other Operators:
* OR: |
« XOR: A

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 07

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A & OxFB;

A First
Program

Flash the
LEDs at a
regular
iInterval

« How do we
do this?

28

INEEENEEEEEN

27 26 25 24 23 22

il

21 20 19 18 17 16 19
INISEEEEEEEEEEE

P

)

PC6 PDI1

PCl
PC2

Cs PC3
PC4

Atmel Mega8

PD4
VCC

PD2
PD3

PDO

GND AVCC PB4
PCO AREF PB5

GND PB7
PB6

PB2

PB3 PBI

PD6 PBO
PD5 PD7

L
1

Wt

+5V

8

INENEREREREENENEE
2 3 4 5 6 7 9

L L L L
10 11 12 13 14

200 ohm

A First
Program

How do we
flash the LED
at a regular
interval?

* We toggle the
state of PBO

il

28 27 26 25 24 23 22
IEESESEEEEEE]

21 20 19 18 17 16 19
INISEEEEEEEEEEE

PC5 PC3 PCI

PC4 PC2 PCO

) Atme

PDO PD2
PC6 PDl1 PD3

PD4

GND AVCC PB4 PB2

VCC PB6

AREF PB5 PB3 PBI

1 Mega8

GND PB7 PD6 PBO
PD5 PD7

NRENERERERENE
12 3 4 5 6 7

JLJI_quLII_ILJ
10 11 12 13 14

+5V

200 ohm

A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

}

A First Program
mazZT {
= OxFF; // Set all port B pins as outputs

whi\le (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
elay_ms (500) ; // Pause for 500 msec

A predefined “variable” (register) that
controls whether the port B pins are
digital inputs or outputs (more on this
later)

A First Program

main () {
DDRB

OxFF; // Set all port B pins as outputs

= PORTB ~ 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

Loop forever

A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB =\PORTB/" 0x1; // XOR bit 0 with 1
delay_ms (J00) ; // Pause for 500 msec

}

|
Another predefined variable: the value

being written to port B

A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

whilg

PORTB ~ 0x1; // XOR bit 0 with 1
deJay_ms (500) ; // Pause for 500 msec

Change the value being written to port B

A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB@ Ox1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

}

Bit-wise XOR operator

A First Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
P = ~ 0x1; // XOR bit 0 with 1
delay_ms (500) // Pause for 500 msec

}

Program pauses for 500 msec. This function is
defined elsewhere.

A Second Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

What does this program do?

A Second Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

Flashes LED on PB1 at 2 Hz
on PB0: 1 Hz

Last Time

Atmel microcontroller

* |/O pins

* Digital port implementation
* Digital output in code

Bit-wise operators

Today

A “bit” more on bit masking/manipulation
Digital input in code

Practical issues in programming your
mega8

Homework 3
Finite state machines

Administrivia
Homework 4 due tonight at 5:00

Thursday: Finite state machines and
project 2

Tuesday (next week): FSM continued and
midterm review

Thursday: midterm

Spring break: the lab will be open on a
limited basis (let me know if you want
access)

More Bit Masking

* Suppose we have a 3-bit number (so
values 0 ... 7)

* Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

» How do we express this in code?

Bit Masking in Practice

Suppose you have connected your 3 robot
control lines to B3, B4, and B5.

Suppose also that you have connected
your 2 turret control lines to B6 and B7

Our robot control lines are specified as
numbers 0 ... 6

How do we change the state of B3...B5
without changing the turret command?

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to_robot;
PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

Bit Masking
M 1 et
<E§%?3::(D§E§> // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short 1s 8-bits wide

val = comm&nd_to_robot;

PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val\& 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5)

}
B3-B7 are outputs; all others are still inputs (could

be different depending on how other pins are used)

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;

// Set the current B3-B5 to 0Os
// OR with new values (shifted
// to fit within B3-B5

PORTB

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;
PORT (PORLB & // Set the current B3-B5 to Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

Substitute an arbitrary value into these
bits

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = foobar;
(PORTB & 0xCT7) // Set the current B3-B5 to O0Os
(val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

And use the result to change the output
state of port B

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = (val & 0xCO) >> o6;

Reading the Digital State of Pins
Imzégg {:(b§§i> // Set pins B3, B4, B5 as outputs

All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = & 0xCO) >> 6;

B6 and B7 are configured as inputs

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

Qal = PINB;

outval = (vyl & 0xCO) >> 6;

Read the value from the port

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

outval =\(val & 0xCO) J>> 6;
} 7

“Mask out” all bits except B6 and B7

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

}

Right shift the result by 6 bits — so the value of B6
and B7 are now in bits 0 and 1 of “outval”

Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional | Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

A Note About the Atmel Book

The book uses C syntax that looks like this:
PORTA.O0 = 0; // Set bit 0 to 0

This syntax is not available with our C
compiler. Instead, you will need to use:

PORTA &= OxFE;

or
PORTA = PORTA & OxFE;

Putting It All Together

* Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

* Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
it from your circuit

Physical Interface for Programming

AVR ISP

Physical Interface for Programming

AVR ISP

e Bl]

Serial
connection to
your computer /

Physical Interface for Programming

AVR ISP

Header
connection wi
connect to
your circuit
(through an
adapter)

A More Complicated Circuit

LC 200 ohm

L1

28 27 26 25 24 23 23 21 20 19 1§ 17 16 13

ENEEEEEEEN NS EEE NN

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5S PB3 PBI

) Atmel Mega8

PD0 PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HNERERERENEEE LI LP LT L]
2 3 45 6 7 of 14 11 12 13 14
16MHz L0

00—

1

17

N

3
AVR ISP ! ; AW oPE

10K ohm ‘M

+5V 200 ohm

Connector

A More Complicated Circuit

« Connect
through
adapter to
AVR ISP

Do not
reverse the
pins!

AVR IP
Connedyor

LC 200 ohm
WW—H WW—
200 0hm
77
ZX“
L1
28 27 26 25 24 23 23 21 20 19 1§ 17 16 13

I P e ri e a
PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5S PB3 PBI

) Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1I PD3 VCC PB6 PD5 PD7

HEEREREREENEN LI L LT L]
112 3 4 5 6 7/ 8 9 10 11 12 13 14
16MHz Lo
U \VacZd
. A 15pF

N

10K ohm ‘M

N

+5V 200 ohm

77

A More Complicated Circuit

Extra LED (

WW—
200 0hm 7
allows you to)\/

see when a
program is
being
downloaded

AN
LC 200 ohm
> MA
N4
ZX\&&
L1
28 27 26 25 24 23 22 21 20 19 1§ 17 16 15

EEEEEEEEEEEE]

IEEEEENEEEEEEEN

)

PC5 PC3 PCl GND
PC4 PC2 PCO AREF PB5 PB3 PBI

AVCC PB4 PB2

Atmel Mega8

PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1I PD3 VCC PB6 PD5 PD7

TLIIJHLIUL
12 3 4 5 6 7

AVR ISP
Connector

VW
10K ohm

+5V

1 1] LI LT LT L

8 9] 10 11 12 13 14
U 16MHz

15pF 3

PTT e

]

LO
gl

200 ohm

77

A More Complicated Circuit

16 MHz crystal
. LC 200 ohm
« Optional! AN T A
« Without it, o
your | TR R
processor WI” \ PC;C4PC3PC2PClPCOGNI,zR]g:VCSBSPBllPB;BIZDB1

run at TMHz \\\> Atmel Mega$8

(In general, PDO PD2 PD4 GND PB7 PD6 PBO
. PD1 PD3 VCC PB6 PD5 PD7

we will use [TITT

16MHz clock)

L

12 13 14

LO
gl

AVR ISP
Connector

10K ohm

Compiling and Downloading Code

 Create a “makefile” and a C source file In
some personal directory

— Start with copies from the “Atmel HOWTO”
part of the web page

« Change the TARGET line in makefile to
match the name of your source file

» Change your source file

Compiling and Downloading Code

From the windoze menu: select “Start” and
then “run”

Type “cmd”. This will bring up a “shell”
interface (a command line)

“cd” (change directory) to your directory

Type “make”. Deal with any errors or
warnings (both are there for a reason)

Type “make program”

Compiling and Downloading Code

* Once the chip is programmed, the AVR
ISP will automatically reset the processor;
starting your program

Hints

» Use LEDs to show status information (e.g.,

to indicate what part of your code is being
executed)

« Have one LED blink in some unique way
at the beginning of your program

* Go slow:
— Implement and test incrementally

— Insert plenty of pauses into your code (use
delay_ms())

Configuring the Clock

« By default, the mega8 chips are configured for 1
MHz operation

* To reconfigure for 16 MHz:

— Add the crystal + capacitors

— Use ‘make setfuse’ to tell the chip that it has a crystal
(you will only need to do this once)

* |If you configure your code to run at 16 MHz, and
things seem to be running slow, then you
probably need a ‘make setfuse’

Final Notes

* You will need some additional circuitry to
program your processor

 There are a few more details in the code

-> See the examples posted on the net

Next Time

* Finite state machines
* Project 2

