
Last Time

Microprocessors Basics
• Busses
• Memory behavior
• Arithmetic Logical Units (ALUs)
• Fetch-Execute cycle
• Registers: general-purpose versus

special-purpose

Today

• Bit Masking
• Atmel Mega8 practicalities

– Circuit design
– Coding
– Programming

Administrivia

• Lab 1 Due today @5:00
– 2 groups left to demonstrate
– Group report
– Personal reports

• Pointers to circuit drawing programs are
on D2L
– Please add your own pointers

Atmel Mega8 Basics

• Complete, stand-
alone computer

• Ours is a 28-pin
package

• Most pins:
– Are used for

input/output
– How they are used

is configurable

Atmel Mega8 Basics

Power (we will use
+5V)

Atmel Mega8 Basics

Ground

Atmel Mega8 Basics

Reset
• Bring low to reset

the processor
• In general, we will

tie this pin to high
through a pull-up
resistor (10K ohm)

Atmel Mega8 Basics

PORT B

Atmel Mega8 Basics

PORT C

Atmel Mega8 Basics

PORT D
(all 8 bits are

available)

A First
Circuit

I/O Pin Implementation

Single bit of
PORT B

I/O Pin Implementation

The physical
pin

I/O Pin Implementation

DDRB
• Defines

whether
this is an
input or an
output

I/O Pin Implementation

PORTB
• Defines the

value that
is written
out to the
pin (if it is
an output)

I/O Pin Implementation

Tristate buffer
• When this

pin is an
output pin, it
allows the
PORTB flip-
flop to drive
the pin

I/O Pin Implementation

Input flip-flop

Bit Manipulation

PORTB is a register
• Controls the value that is output by the set

of port B pins
• But – all of the pins are controlled by this

single register (which is 8 bits wide)

• In code, we need to be able to manipulate
the pins individually

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Bit-Wise Operators

Other Operators:
• OR: |
• XOR: ^

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A | 4;

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 0?

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A & 0xFB;

A First
Program

Flash the
LEDs at a
regular
interval

• How do we
do this?

A First
Program

How do we
flash the LED
at a regular
interval?

• We toggle the
state of PB0

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

A predefined “variable” (register) that
controls whether the port B pins are
digital inputs or outputs (more on this
later)

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Loop forever

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Another predefined variable: the value
being written to port B

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Change the value being written to port B

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Bit-wise XOR operator

A First Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Program pauses for 500 msec. This function is
defined elsewhere.

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PB1 at 2 Hz
on PB0: 1 Hz

Last Time

Atmel microcontroller
• I/O pins
• Digital port implementation
• Digital output in code

Bit-wise operators

Today

• A “bit” more on bit masking/manipulation
• Digital input in code
• Practical issues in programming your

mega8
• Homework 3
• Finite state machines

Administrivia
• Homework 4 due tonight at 5:00
• Thursday: Finite state machines and

project 2
• Tuesday (next week): FSM continued and

midterm review
• Thursday: midterm

• Spring break: the lab will be open on a
limited basis (let me know if you want
access)

More Bit Masking

• Suppose we have a 3-bit number (so
values 0 … 7)

• Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

• How do we express this in code?

Bit Masking in Practice

• Suppose you have connected your 3 robot
control lines to B3, B4, and B5.

• Suppose also that you have connected
your 2 turret control lines to B6 and B7

• Our robot control lines are specified as
numbers 0 … 6

• How do we change the state of B3…B5
without changing the turret command?

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5)
}

B3-B7 are outputs; all others are still inputs (could
be different depending on how other pins are used)

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

Substitute an arbitrary value into these
bits

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = foobar;

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

And use the result to change the output
state of port B

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

B6 and B7 are configured as inputs

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Read the value from the port

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

“Mask out” all bits except B6 and B7

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Right shift the result by 6 bits – so the value of B6
and B7 are now in bits 0 and 1 of “outval”

Port-Related Registers

The set of C-accessible register for controlling
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional
control

A Note About the Atmel Book

The book uses C syntax that looks like this:
PORTA.0 = 0; // Set bit 0 to 0

This syntax is not available with our C
compiler. Instead, you will need to use:

PORTA &= 0xFE;

or
PORTA = PORTA & 0xFE;

Putting It All Together

• Program development:
– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and

other tools) to generate code on your laptop
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will

be able to program the chip without removing
it from your circuit

Physical Interface for Programming

AVR ISP

Physical Interface for Programming

AVR ISP

Serial
connection to
your computer

Physical Interface for Programming

AVR ISP

Header
connection will
connect to
your circuit
(through an
adapter)

A More Complicated Circuit

A More Complicated Circuit
• Connect

through
adapter to
AVR ISP

• Do not
reverse the
pins!

A More Complicated Circuit

Extra LED
allows you to
see when a
program is
being
downloaded

A More Complicated Circuit
16 MHz crystal
• Optional!
• Without it,

your
processor will
run at 1MHz
(in general,
we will use
16MHz clock)

Compiling and Downloading Code

• Create a “makefile” and a C source file in
some personal directory
– Start with copies from the “Atmel HOWTO”

part of the web page

• Change the TARGET line in makefile to
match the name of your source file

• Change your source file

Compiling and Downloading Code

• From the windoze menu: select “Start” and
then “run”

• Type “cmd”. This will bring up a “shell”
interface (a command line)

• “cd” (change directory) to your directory
• Type “make”. Deal with any errors or

warnings (both are there for a reason)
• Type “make program”

Compiling and Downloading Code

• Once the chip is programmed, the AVR
ISP will automatically reset the processor;
starting your program

Hints

• Use LEDs to show status information (e.g.,
to indicate what part of your code is being
executed)

• Have one LED blink in some unique way
at the beginning of your program

• Go slow:
– Implement and test incrementally
– Insert plenty of pauses into your code (use

delay_ms())

Configuring the Clock

• By default, the mega8 chips are configured for 1
MHz operation

• To reconfigure for 16MHz:
– Add the crystal + capacitors
– Use ‘make setfuse’ to tell the chip that it has a crystal

(you will only need to do this once)

• If you configure your code to run at 16MHz, and
things seem to be running slow, then you
probably need a ‘make setfuse’

Final Notes

• You will need some additional circuitry to
program your processor

• There are a few more details in the code

-> See the examples posted on the net

Next Time

• Finite state machines
• Project 2

