Last Time

 Finite State Machines for control
— Translation of raw sensory data into FSM events

— Actions can take time and are often implemented as
function calls

— Often perform some low-level control while in a state
or all the time

e Finite State Machines in code
— ‘state’ variable
— Switch statements

* Project 4



Today

* Project 4
— FSM events
— Control actions
— Low-level control

» Making the connection between digital and
analog representations



Digital to Analog and Back

* Analog: encoding information using
voltage

— Many sensors use voltage as an output

— Motors torque is determined by current
passing through the motor

 Digital: encoding information with bits

How to move between these?



Digital to Analog Conversion

How could we do this with a single digital pin
of our microprocessor?



Digital to Analog Conversion:
Pulse Width Modulation

PWM in

What does this circuit do?
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Digital to Analog Conversion:
Pulse Width Modulation
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* Processor digital pin: generate PWM
signal

* RC circuit “smooths” this PWM signal out
* Pulse width determines smoothed voltage



D2A: Pulse Width Modulation
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« Easy to implement

« But:
— Assumes “analog out” requires zero current

— Smoothed signal may not be smoothed
enough

— Filter induces a delay



Digital to Analog Conversion:
Resistive Network

Sometimes need faster response
» Solution: use multiple digital pins

 What would this circuit look like?



Analog to Digital Conversion

For a given voltage, what is the digital
representation of the voltage?

* How would we implement this?



Analog to Digital Conversion

» For a given voltage, what is the digital
representation of the voltage?

« Common approach: successive
approximation
— Use a D2A converter to produce a voltage V
— Compare this with the input voltage Vi
— If different, then increase/decrease V
— Repeat (stopping when V is close to Vi)



A2D In the Mega8
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A2D In the Mega8

AVCC: connect to +5V

AREF: (optional) connect
to +5V

* Measuring voltages
between 0 and +5V

Connect input analog
signal to the appropriate
ADC pin
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A Code Example

// Initialize adc
adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin
adc_set_adlar (0); // For our purposes, always use 0
adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock

// and 10 bit resolution
// Turn on ADC Converter
adc_set_enable (ADC_ENABLE) ;

long wval;

// Can do the following an arbitrary number of times
adc_set_channel (ADC_CHANNEL_O) ; // ADCO

// Actually start a conversion
adc_start_conversion () ;

<Could go off and do something else for a while>

val = adc_read(); // Read the analog value



Analog Conversion Notes

* All functions are provided in oulib.c
 See oulib.h for the definition of constants

« Can get to the example code from the
Atmel HowTo

www.cs.ou.edu/~fagg/classes/general/atmel



Analog Conversion Notes

« Setting the maximum voltage:

adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin

« Can also used a fixed voltage (+2.56V):

adc_set_reference (ADC_REF_2p56V) ;



Analog Conversion Notes

» Determining how fast the conversion
requires:

adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock
// and 10 bit resolution

» Conversion requires:

128 * 15/ 16000000 seconds

— Can convert faster, but may not get the full 10-
bit resolution



Analog Conversion Notes

* Reading out the value:

val = adc_read(); // Read the analog value

» Blocks until conversion is complete

 Will return a value between 0 and Ox3FF
(1023)



Other Devices

 External devices are available that will
perform D2A and A2D

 Often interface to the microprocessor via
12C or SPI
— (these are high-speed serial protocols)
* Many options
— Resolution
— Conversion speed
— Number of channels



