Last Time

 Finite State Machines for control
— Translation of raw sensory data into FSM events

— Actions can take time and are often implemented as
function calls

— Often perform some low-level control while in a state
or all the time

e Finite State Machines in code
— ‘state’ variable
— Switch statements

* Project 4

Today

* Project 4
— FSM events
— Control actions
— Low-level control

» Making the connection between digital and
analog representations

Digital to Analog and Back

* Analog: encoding information using
voltage

— Many sensors use voltage as an output

— Motors torque is determined by current
passing through the motor

 Digital: encoding information with bits

How to move between these?

Digital to Analog Conversion

How could we do this with a single digital pin
of our microprocessor?

Digital to Analog Conversion:
Pulse Width Modulation

PWM in

What does this circuit do?

—

>
analog out

Digital to Analog Conversion:
Pulse Width Modulation

W —mre >
analog out

PWM in

;77

* Processor digital pin: generate PWM
signal

* RC circuit “smooths” this PWM signal out
* Pulse width determines smoothed voltage

D2A: Pulse Width Modulation

YW . >

PWM in
analog out

;77

« Easy to implement

« But:
— Assumes “analog out” requires zero current

— Smoothed signal may not be smoothed
enough

— Filter induces a delay

Digital to Analog Conversion:
Resistive Network

Sometimes need faster response
» Solution: use multiple digital pins

 What would this circuit look like?

Analog to Digital Conversion

For a given voltage, what is the digital
representation of the voltage?

* How would we implement this?

Analog to Digital Conversion

» For a given voltage, what is the digital
representation of the voltage?

« Common approach: successive
approximation
— Use a D2A converter to produce a voltage V
— Compare this with the input voltage Vi
— If different, then increase/decrease V
— Repeat (stopping when V is close to Vi)

A2D In the Mega8

PDIP
* The mega8 contains -
(RESET) PC6 [1 28 |1 PC5 (ADC5/SCL)
hardware that ol st I i s
: : (TXD) PD1 [3 26 1 PC3 (ADC3)
Implements successive INTO) PD2 [l 2 | P02 (AR
- - (INT1) PD3 5 24 1 PC1 (ADCY)
approxim ation (XCK/T0) PD4] 6 23 |1 PCO (ADCO)
. vee o7 22 [1GND
e 5 mega8 pPINS Can be GND 8 21 AREF
. (XTAL1/TOSC1) PB6 [] 9 20 [AvCe
CO nflg ured as analog (XTAL2TOSC2) PB7 [] 10 19 1 PB5 (SCK)
: . (T1) PD5] 11 18 1 PB4 (MISO)
Input pPINS (AINO) PD6 [12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [13 16 1 PB2 (SS/0C1B)
(ICP1) PBO] 14 15 1 PB1 (OC1A)

A2D In the Mega8

AVCC: connect to +5V

AREF: (optional) connect
to +5V

* Measuring voltages
between 0 and +5V

Connect input analog
signal to the appropriate
ADC pin

PDIP

o ~N O Ok WM =

(XTAL1/TOSC1) PB6 [
(XTAL2/TOSCZ PB7 [

(AIN1) PD7 [
(ICP1) PBO [

o/

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1 PC5
M PC4
1 PC3
1 PC2
1 PCH

1 PCO
1GND
] AREF

1 AVCC

1 PB5 (SCK)

1 PB4 (MISO)

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC?2)
ADC1)
ADCO)

— e — — — —

(

1PB3 (MOSI/OC2)
1 PB2 (SS/OC1B)
1PB1 (OC1A)

A Code Example

// Initialize adc
adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin
adc_set_adlar (0); // For our purposes, always use 0
adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock

// and 10 bit resolution
// Turn on ADC Converter
adc_set_enable (ADC_ENABLE) ;

long wval;

// Can do the following an arbitrary number of times
adc_set_channel (ADC_CHANNEL_O) ; // ADCO

// Actually start a conversion
adc_start_conversion () ;

<Could go off and do something else for a while>

val = adc_read(); // Read the analog value

Analog Conversion Notes

* All functions are provided in oulib.c
 See oulib.h for the definition of constants

« Can get to the example code from the
Atmel HowTo

www.cs.ou.edu/~fagg/classes/general/atmel

Analog Conversion Notes

« Setting the maximum voltage:

adc_set _reference (ADC_REF_AREF) ; // Use the AREF reference pin

« Can also used a fixed voltage (+2.56V):

adc_set_reference (ADC_REF_2p56V) ;

Analog Conversion Notes

» Determining how fast the conversion
requires:

adc_set_prescalar (ADC_PRESCALAR_128); // Necessary with 16MHz clock
// and 10 bit resolution

» Conversion requires:

128 * 15/ 16000000 seconds

— Can convert faster, but may not get the full 10-
bit resolution

Analog Conversion Notes

* Reading out the value:

val = adc_read(); // Read the analog value

» Blocks until conversion is complete

 Will return a value between 0 and Ox3FF
(1023)

Other Devices

 External devices are available that will
perform D2A and A2D

 Often interface to the microprocessor via
12C or SPI
— (these are high-speed serial protocols)
* Many options
— Resolution
— Conversion speed
— Number of channels

