Input/Output Systems

Processor needs to communicate with other
devices:

* Receive signals from sensors
« Send commands to actuators
* Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
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/O Systems

Communication can happen in a variety of
ways:

 Binary parallel signal

 Serial signals (what you are using for the
heli)

* Analog

Andrew H. Fagg: Embedded Real-
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/O Systems

Many devices are operating independently
of the processor — except when
communication happens

» We say that these devices are acting
asynchronously of the processor

* The processor must have some way of
knowing that something has changed with
the device (e.g., that it is ready to send or
receive information)

Andrew H. Fagg: Embedded Real-
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An Example:
SICK Laser Range Finder

Laser is scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

Spatial resolution: ~.5
degrees, 1 cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 4
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/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {
x = PINB & 0x10;
twhile (x == 0);

y = PINC ..

Andrew H. Fagg: Embedded Real-
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/0 By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
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/O By Polling

What is wrong with this approach?

* In embedded systems, we are typically
managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output



/0 By Polling

» We can potentially be waiting for a long
time before the state changes

— We call this busy waiting

* The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
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/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>
}while (x == 0);
y = PINC ..

Andrew H. Fagg: Embedded Real-
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/O By Polling: An Alternative

Polling works great ... but:

» We have to guarantee that our “something
else” does not take too long (otherwise,
we may miss the event)

» Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 10
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/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* We know the event is coming very soon
* We must respond to the event very quickly

(both are typically measured in nano- to
micro- seconds)

Andrew H. Fagg: Embedded Real- 11
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Administrivia

Down to one functional heli
Some replacement parts arrive today

By deadline: demo at least parts 1-4
— Hand in other components
Demo part 5 as soon as feasible

— Once other helis are up: two day time limit
— No more than a week

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Last Time

Counter/Timers

» Counting events: external events or clock
ticks

* Prescalar divides the clock frequency
(implemented as yet another counter)

/0O by Polling

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Today

An alternative to polling: interrupts

* Processor is interrupted from what it is
doing to perform some other task

 Once done with the task, returns to what it
was previously doing

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>
}while (x == 0);
y = PINC ..

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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/O By Polling: An Alternative

Polling works great ... but:

» We have to guarantee that our “something
else” does not take too long (otherwise,
we may miss the event)

» Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 16
Time Systems: Input/Output



An Alternative: Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes an interrupt
handler (a small piece of code)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real- 17
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Some Sources of Interrupts
(Mega8)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
 Processor reset

« The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Interrupts

There are many possible interrupts
» How do we know which one has occurred?

» How does the processor respond to a
specific interrupt?

Andrew H. Fagg: Embedded Real- 19
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Interrupts

How do we know which interrupt has
occurred?

* The mega8 hardware identifies each
interrupt with a unique signal

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Interrupts

The mega8 hardware identifies each
interrupt with a unique signal

How does the processor respond to a
specific interrupt?

* The processor stores an interrupt table in
program memory

» Each unique signal has its own table entry

Andrew H. Fagg: Embedded Real- 21
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Mega8 Interrupt Table Implementation

addressLabels Code

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He )

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 22
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Mega8 Interrupt Table Implementation

addressLabels Code

Address in
the program

memory

s000
5001
5002
s003
5004
5005
s0086
5007
5008
s009
s00a
S00b
500c
s00d
$00e
S00f
$010
=He )

Comments

rijmp RESET ; Reset Handler

rijmp EXT_INTO ; IRQ0 Handler

rjmp EXT_INT1 ; IRQ1 Handler

rijmp TIM2_COMP ; TimerZ Compare Handler

rjmp TIM2_OVF ; Timer2 Overflow Handler

rjmp TIMI1_CAPT ; Timerl Capture Handler

rijmp TIM1 COMEA ; Timerl Comparel Handler

rjmp TIM1_COMFR ; Timerl CompareB Handler

rjmp TIM1_OVF ; Timerl Overflow Handler

rijmp TIMO_OVF ; Timer0 Overflow Handler

rjmp SPI_STC ; SPI Transfer Complete Handler
rijmp USART RXC ; USART RX Complete Handler
rjmp USART_UDRE ; UDR Empty Handler

rjmp USART_TXC ; USART TX Complete Handler
rjmp ADC ; ADC Conversion Complete Handler
rijmp EE_RDY ; EEPROM Ready Handler

rjmp ANA_COMP ; Analog Comparator Handler
rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 23
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Mega8 Interrupt Table Implementation

addressLabels Code

Comments

s000 rijmp RESET ; Reset Handler
s001 rijmp EXT_INTO ; IRQ0 Handler
s002 rjmp EXT_INT1 ; IRQ1 Handler
s0 rijmp TIM2_COMP ; TimerZ Compare Handler
s004 rjmp TIM2_OVF ; Timer2 Overflow Handler
5005 rjmp TIMI1_CAPT ; Timerl Capture Handler
Change s006 rijmp TIM1 COMEA ; Timerl Comparel Handler
program s007 rjmp TIM1_COMFR ; Timerl CompareB Handler
COunter tO s008 rjmp TIM1_OVF ; Timerl Overflow Handler
. 5009 rijmp TIMO_OVF ; Timer0 Overflow Handler
the |OCatIOn s00a rjmp SPI_STC ; SPI Transfer Complete Handler
identified by $00b rimp USART_RXC ; USART RX Complete Handler
“EXT INT-‘ »  500c rjmp USART_UDRE ; UDR Empty Handler
s00d rjmp USART_TXC ; USART TX Complete Handler
s00e rjmp ADC ; ADC Conversion Complete Handler
S00f rijmp EE_RDY ; EEPROM Ready Handler
s010 rjmp ANA_COMP ; Analog Comparator Handler
S011 rijimp TWSI ; Two-wire Serial Interface
Andrew H. Fagg: Embedded Real- 24
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Interrupt Example

Suppose we are executing the
“something else” code:

LDS R1 (A)<+— PC
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)
CP R2, R1 < PC
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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An Example

An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1 «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 st regg Emoossos et

Time Systems: Input/Output
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An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
LDS R2 (B)

CP R2, R1—»
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3 st regg Emoossos et

Time Systems: Input/Output

rimp EXT_INT1 «— PC
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An Example
An interrupt occurs (EXT _INT1):

LDS R1 (A)
DSR2 (B)

» BRGE 3
LDS R3 (D \ remember this location
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) PC ;:LDS R1 (G)
CP R2. R1—» rmp EXT _INT1 LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RET]

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 31
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An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 PC —»LDS R5 (L)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 32
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An Example
Execute the interrupt handler

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
oP R2, R LDS RS (1)
» BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 33
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An Example
Execute the interrupt handler

EXT INTH:
=05 1A LDS R1 (G)
LDS R2 (B) o8 5 (1)
CP R2, R1
> BRGE 3 o _ ADDRI,R2
LDS R3 (D) -
ADD R3, R1 RET]

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 34
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An Example

Return from interrupt

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
oP R2, R LDS RS (1)
» BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RET!

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 35
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An Example

Return from interrupt

EXT INT1:
DS R1 (A)
DS R2 (B) DS R1 (G)
cP R2, A1 LDS R5 (1

» BRGE 3 <— PC
DS R3 (D)\ -
ADD R3, R1 RET]
STS (D), R3  sewt. Fagg: Embocded reat 36

Time Systems: Input/Output
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An Example

Continue execution with original

EXT INTH:
LDS R1 (A)

CP R2. R1 LDS R> (L)
SRGE 3 ADD R1. R2
DS R3 (D) «— pPC -

ADD R3, R1 RET

STS (D) 3 R3 Andrew H. Fagg: Embedded Real- 37
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An Example

Continue execution with original

EXT_INT1:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, R1ie— PC
STS (D)s R3 Andrew H. Fagg: Embedded Real- 38
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Interrupt Routines

» Generally a very small number of
instructions

— We want a quick response so the processor
can return to what it was originally doing

» Register use

— If the interrupt routine makes use of registers,
then it must restore their state before
returning

— We accomplish this through the use of a
special data structure called a stack

Andrew H. Fagg: Embedded Real- 39
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Divert to interrupts and timer/counters

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Last Time

* Interrupts
— Response to external or internal event

— Temporarily halt the execution of the main
program to execute an event-related section
of code

* Timer/counters and interrupts
— Interrupts at regular intervals
— Useful for control and timing
— Pulse width modulation

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Configuring Timer/Counter
Interrupts

Set prescalar: divide main clock frequency
Provide an interrupt service routine (ISR)
Enable the specific interrupt

— In our examples, we use timerQ_enable()

Enable global interrupts
— sei()
— Turns on all interrupts

Andrew H. Fagg: Embedded Real- 57
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Today

* ISR example:
— Processing serial input

* Finite state machines (FSMs)
— Representing temporal behavior

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output
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Recelve

* Receive pin
(PDO)

* Receive
shift register
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Recelve

* “1” on the pin

 Shift register
initially in an
unknown
state
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Receive
“1 b b iS
presented to
the shift
register
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Recelve

Next bit is
shifted in
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Recelve

And the next
bit...
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Recelve

And the 8™ bit
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Back to Receiving Serial Data...

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();

<do something with the character>

}

<do something else while waiting>

With this solution, how long can “something else” take?

Andrew H. Fagg: Embedded Real- 68
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Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
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Receliving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
» Let’s create a larger buffer...

Andrew H. Fagg: Embedded Real-
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Receliving Serial Data

Creating a larger buffer. This will be a

globally-defined data structure composed
of:

* N-byte memory space:
char buffer [BUF_SIZE];

* Integers that indicate the first element in
the buffer and the number of elements:

int front, nchars;

Andrew H. Fagg: Embedded Real- 71
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Buffered Serial Data

Implementation:

* We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

* Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real- 72
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Interrupt Handler

// Called when the UART receives a byte
ISR (UART_RECV_wvect) {

Andrew H. Fagg: Embedded Real-
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Interrupt Handler

volatile char buffer[BUF_SIZE];
volatile uint8_t front;

volatile uint8 _t nchars;

// Called when the UART receives a byte
ISR (UART_RECV_vect) {

// Handle the character in the UART buffer
int ¢ = getchar();

if (nchars < BUF_SIZE) {

buffer|[ (front+nchars)sBUF_SIZE] = c;
nchars += 1;

} Andrew H. Fagg: Embedded Real- 74
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Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer

int get_next_character () {

Andrew H. Fagg: Embedded Real-
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Reading Out Characters

// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character () {
int cj;
1f (nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
——nchars;

front = (front + 1)%BUF_SIZE;
return (c) ;

Andrew H. Fagg: Embedded Real-
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An Updated main()

int c;
while (1) {
do |

272727

twhile (?27?27?);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
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An Updated main()

int c;
while (1) {
do {
c = get_next_character();
if(c !'= -1)

<do something with the character>
twhile(c !'= -1);

<do something else while waiting>

Andrew H. Fagg: Embedded Real-
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Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ....

Andrew H. Fagg: Embedded Real-
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Buffered Serial Data

Subtle issues:

* The reading side of the code must make
sure that it does not allow the buffer to
overflow
— But at least we have BUF_SIZE times more

time

 We have a shared data problem ...

Andrew H. Fagg: Embedded Real- 80
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The Shared Data Problem

» Two independent segments of code that
could access the same data structure at
arbitrary times

 |[n our case, get _next_character() could be

interrupted while it is manipulating the
buffer

— This can be very bad

Andrew H. Fagg: Embedded Real- 81
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Solving the Shared Data Problem

* There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
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Solving the Shared Data Problem

There are a variety of techniques that are
available:

» (Clever coding
« Disabling interrupts
« ... and others

Andrew H. Fagg: Embedded Real-
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Disabling Interrupts

 How can we modify get_next_character()?

* The it is important that the critical section be as
short as possible

Assume:
 serial_receive_enable(): enable interrupt flag

» serial_receive _disable(): clear (disable) interrupt
flag

Andrew H. Fagg: Embedded Real- 84
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Modified get_next_character()

int get_next_character () {
int c;
serial receive_disable() ;
if (nchars == 0)
serial receive_enable();
return(-1); // Error

else {
// Pull out the next character

c = buffer[front];
——nchars;
front = (front + 1)3%BUF_SIZE;

serial receive_enable();

return (c) ;

} Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output



Initialization Detalls

main ()

{
nchars = 0;
front = 0;

// Enable UART receive interrupt

serlal receilive_ enable () ;

// Enable global interrups

sel();

Andrew H. Fagg: Embedded Real-
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Enabling/Disabling Interrupts

« Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

« But: must not disable interrupts for a very
long time
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Enabling/Disabling Interrupts

Depending on the problem you are solving,
you can either:

» Enable/disable global interrupts

» Enable/disable just one of the interrupts
— Typical if only one will do
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Timer O Interrupt

e Enable: timer0 enable
e Disable: timer0 disable

Similar functions for timers 1 and 2
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