
Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

1

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

2

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal
• Serial signals (what you are using for the

heli)
• Analog

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

3

I/O Systems
Many devices are operating independently

of the processor – except when
communication happens

• We say that these devices are acting
asynchronously of the processor

• The processor must have some way of
knowing that something has changed with
the device (e.g., that it is ready to send or
receive information)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

4

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle (within a
very narrow region)

• Spatial resolution: ~.5
degrees, 1 cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

5

I/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {

x = PINB & 0x10;

}while(x == 0);

y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

6

I/O By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

7

I/O By Polling

What is wrong with this approach?
• In embedded systems, we are typically

managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

8

I/O By Polling

• We can potentially be waiting for a long
time before the state changes
– We call this busy waiting

• The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

9

I/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>

}while(x == 0);

y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

10

I/O By Polling: An Alternative

Polling works great … but:
• We have to guarantee that our “something

else” does not take too long (otherwise,
we may miss the event)

• Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

11

I/O by Polling

In practice, we typically reserve this polling
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are typically measured in nano- to
micro- seconds)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

12

Administrivia

• Down to one functional heli
• Some replacement parts arrive today

• By deadline: demo at least parts 1-4
– Hand in other components

• Demo part 5 as soon as feasible
– Once other helis are up: two day time limit
– No more than a week

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

13

Last Time

Counter/Timers
• Counting events: external events or clock

ticks
• Prescalar divides the clock frequency

(implemented as yet another counter)

I/O by Polling

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

14

Today

An alternative to polling: interrupts
• Processor is interrupted from what it is

doing to perform some other task
• Once done with the task, returns to what it

was previously doing

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

15

I/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

x = PINB & 0x10;

<go do something else>

}while(x == 0);

y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

16

I/O By Polling: An Alternative

Polling works great … but:
• We have to guarantee that our “something

else” does not take too long (otherwise,
we may miss the event)

• Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

17

An Alternative: Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes an interrupt
handler (a small piece of code)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

18

Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

19

Interrupts

There are many possible interrupts
• How do we know which one has occurred?
• How does the processor respond to a

specific interrupt?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

20

Interrupts
How do we know which interrupt has

occurred?
• The mega8 hardware identifies each

interrupt with a unique signal

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

21

Interrupts
The mega8 hardware identifies each

interrupt with a unique signal

How does the processor respond to a
specific interrupt?

• The processor stores an interrupt table in
program memory

• Each unique signal has its own table entry

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

22

Mega8 Interrupt Table Implementation

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

23

Mega8 Interrupt Table Implementation

Address in
the program
memory

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

24

Mega8 Interrupt Table Implementation

Change
program
counter to
the location
identified by
“EXT_INT1”

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

25

Interrupt Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

26

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

27

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

28

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

29

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

30

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PCrjmp EXT_INT1

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

31

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
rjmp EXT_INT1

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

32

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

33

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

34

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

35

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

36

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

37

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

38

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

39

Interrupt Routines
• Generally a very small number of

instructions
– We want a quick response so the processor

can return to what it was originally doing
• Register use

– If the interrupt routine makes use of registers,
then it must restore their state before
returning

– We accomplish this through the use of a
special data structure called a stack

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

40

Divert to interrupts and timer/counters

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

56

Last Time
• Interrupts

– Response to external or internal event
– Temporarily halt the execution of the main

program to execute an event-related section
of code

• Timer/counters and interrupts
– Interrupts at regular intervals
– Useful for control and timing
– Pulse width modulation

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

57

Configuring Timer/Counter
Interrupts

• Set prescalar: divide main clock frequency
• Provide an interrupt service routine (ISR)
• Enable the specific interrupt

– In our examples, we use timer0_enable()

• Enable global interrupts
– sei()
– Turns on all interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

58

Today

• ISR example:
– Processing serial input

• Finite state machines (FSMs)
– Representing temporal behavior

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

59

Receive

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

60

Receive

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

61

Receive

• “1” on the pin
• Shift register

initially in an
unknown
state xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

62

Receive

“1” is
presented to
the shift
register

xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

63

Receive

“1” is shifted
into the most
significant bit
(msb) of the
shift register 1xxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

64

Receive

Next bit is
shifted in

11xxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

65

Receive

And the next
bit…

011xxxxx 0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

66

Receive

And the 8th bit

01101011 0

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

67

Receive

Completed byte
is stored in
the UART
buffer

01101011 0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

68

Back to Receiving Serial Data…

With this solution, how long can “something else” take?

int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

69

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

70

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

• The UART implements a 1-byte buffer
• Let’s create a larger buffer…

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

71

Receiving Serial Data

Creating a larger buffer. This will be a
globally-defined data structure composed
of:

• N-byte memory space:
char buffer[BUF_SIZE];

• Integers that indicate the first element in
the buffer and the number of elements:

int front, nchars;

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

72

Buffered Serial Data

Implementation:
• We will use an interrupt routine to transfer

characters from the UART to the buffer as
they become available

• Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

73

Interrupt Handler
// Called when the UART receives a byte

ISR(UART_RECV_vect) {

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

74

Interrupt Handler
volatile char buffer[BUF_SIZE];

volatile uint8_t front;

volatile uint8_t nchars;

// Called when the UART receives a byte

ISR(UART_RECV_vect) {

// Handle the character in the UART buffer

int c = getchar();

if(nchars < BUF_SIZE) {

buffer[(front+nchars)%BUF_SIZE] = c;

nchars += 1;

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

75

Reading Out Characters
// Called by a “main” program

// Get the next character from the circular buffer

int get_next_character() {

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

76

Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

int c;
if(nchars == 0)

return(-1); // Error
else {

// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;
front = (front + 1)%BUF_SIZE;
return(c);

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

77

An Updated main()
int c;

while(1) {

do {

????

}while(???);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

78

An Updated main()
int c;

while(1) {

do {

c = get_next_character();

if(c != -1)

<do something with the character>

}while(c != -1);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

79

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ….

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

80

Buffered Serial Data

Subtle issues:
• The reading side of the code must make

sure that it does not allow the buffer to
overflow
– But at least we have BUF_SIZE times more

time

• We have a shared data problem …

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

81

The Shared Data Problem

• Two independent segments of code that
could access the same data structure at
arbitrary times

• In our case, get_next_character() could be
interrupted while it is manipulating the
buffer
– This can be very bad

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

82

Solving the Shared Data Problem

• There are segments of code that we want
to execute without being interrupted

• We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

83

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Disabling interrupts
• … and others

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

84

Disabling Interrupts

• How can we modify get_next_character()?

• The it is important that the critical section be as
short as possible

Assume:
• serial_receive_enable(): enable interrupt flag
• serial_receive_disable(): clear (disable) interrupt

flag

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

85

Modified get_next_character()
int get_next_character() {

int c;

serial_receive_disable();

if(nchars == 0)

serial_receive_enable();
return(-1); // Error

else {

// Pull out the next character

c = buffer[front];

--nchars;

front = (front + 1)%BUF_SIZE;

serial_receive_enable();
return(c);

}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

86

Initialization Details
main()

{

nchars = 0;

front = 0;

// Enable UART receive interrupt

serial_receive_enable();

// Enable global interrups

sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

88

Enabling/Disabling Interrupts

• Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted
– This allows for safe access to shared

variables

• But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

89

Enabling/Disabling Interrupts

Depending on the problem you are solving,
you can either:

• Enable/disable global interrupts
• Enable/disable just one of the interrupts

– Typical if only one will do

Andrew H. Fagg: Embedded Real-
Time Systems: Input/Output

90

Timer 0 Interrupt

• Enable: timer0_enable
• Disable: timer0_disable

Similar functions for timers 1 and 2

