Components of a Microprocessor

Andrew H. Fagg: Embedded Real- 1
Time Systems: Microcontrollers

Components of a Microprocessor

* Memory:
— Storage of data
— Storage of a program

» Registers: small, fast memories

— General purpose: store arbitrary data

— Special purpose: used to control the
processor

Andrew H. Fagg: Embedded Real- 2
Time Systems: Microcontrollers

Components of a Microprocessor

e |nstruction decoder:

— Translates current program instruction into a
set of control signals

 Arithmetic logical unit:

— Performs both arithmetic and logical
operations on data

* Input/Output control units

Andrew H. Fagg: Embedded Real- 3
Time Systems: Microcontrollers

Components of a Microprocessor

» Many of these components must
exchange data with one-another

e |tis common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real- 4
Time Systems: Microcontrollers

Buses
In the simplest form, it is a single wire

Many different components can be
attached to the bus

Any component can take input from the
bus

At most one component may write to the
bus at any one time

Which component is allowed to write is
usually determined by the instruction
decoder (in the microprocessor case)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Collections of Bits

8 bits: a “byte”
* 4 bits: a “nybble”

* “words”: can be 8, 16, or 32 bits
(depending on the processor)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Collections of Bits

A data bus typically captures a set of bits
simultaneously

So: one wire for each of these bits

In the Atmel Mega8: the data bus is 8-bits
“wide”

In your home machines: 32 or 64 bits

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Last Time

« Sequential circuit design
« Components of a microprocessor
* Memory

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Today

* Memory in more detall
* Registers
» High-level view of the Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

10

Administrivia

« Sequential logic pdf file: added a few more
slides

 Homework 2:
— Due on Thursday @5:00 pm
* Project 1:

— Start in class in 1 week

— Come with laptops: have AVRstudio and
WINauvr installed ahead of time

Andrew H. Fagg: Embedded Real- 11
Time Systems: Microcontrollers

A Memory Abstraction

» We think of memory as an array of
elements — each with its own address
 Each element contains a value

— It is most common for the values to by 8-bits
wide (so a byte)

0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B

0 1 23 M_|

Andrew H. Fagg: Embedded Real- 12
Time Systems: Microcontrollers

A Memory Abstraction

» We think of memory as an array of
elements — each with its own address
 Each element contains a value

— It is most common for the values to by 8-bits
wide (so a byte)

Stored value
X
0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B
o 1 2 3 M_
Y Andrew H. Fagg: Embedded Real- 13

Address Time Systems: Microcontrollers

Memory Operations

Read
foo (A+5) ;

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.

The result is handed to a function called
foo();

Andrew H. Fagg: Embedded Real- 14
Time Systems: Microcontrollers

Memory Operations

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real- 15
Time Systems: Microcontrollers

Types of Memory

Random Access Memory (RAM)

« Computer can change state of this
memory at any time

* Once power is lost, we lose the contents
of the memory

» This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

16

Types of Memory

Read Only Memory (ROM)

« Computer cannot arbitrarily change state
of this memory

* When power is lost, the contents are
maintained

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

17

Types of Memory

Erasable/Programmable ROM (EPROM)

« State can be changed under very specific
conditions (usually not when connected to
a computer)

» Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Andrew H. Fagg: Embedded Real- 18
Time Systems: Microcontrollers

Example: A Read/Write
Memory Module

Inputs:

« 2 Address bits: A0 and A1

» 1 “chip select” (CS) bit

* 1 read/write bit (1 = read; 0 = write)
1 clock signal (CLK)

Input or Output:
 Data bit (connected to the “data bus”)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

19

A Read/Write Memory Module

/ Address Data
M Bus Bus

N

Z\

CS

R/W
CLK

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

A Read/Write Memory Module

Address Data
Bus Bus
CS

R/W

CLK

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Z\

Inputs or
outputs

Our
example:

. M=2
o N=1

21

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address”?

How could we implement each memory
element?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

22

Implementing A Read/Write
Memory Module
With 2 address bits, how many memory
elements can we address?
* 4 1-bit elements

How could we implement each memory
element?

* With a D flip-flop
— (more about this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

23

Memory Module Specification

“chip select” signal:

 Allows us to have multiple devices (e.g.,
memory modules) that can write to the bus

» But: only one device will ever be selected
at one time

Andrew H. Fagg: Embedded Real- 24
Time Systems: Microcontrollers

Memory Module Specification

When chip select is low:
 No memory elements change state
* The memory does not drive the data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

25

Memory Module Specification

When chip select is high:

+ If R/W is high:

— Drive the data bus with the value that is
stored in the element specified by A1, AO

* |[f R/W is low:

— Store the value that is on the data bus in the
element specified by A1, AO

Andrew H. Fagg: Embedded Real- 26
Time Systems: Microcontrollers

Memory Timing Diagram

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

27

Memory Timing Diagram

Q2
N4
AO

RW.
cs _/
CLK _______ Data bus not driven
D

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

28

Memory Timing Diagram
A1 J \
AO

rRW O\

Memory element 2 is
initially in a high state

cs /
CLK \
D N

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

29

Memory Timing Diagram

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

30

Memory Timing Diagram

Q2
Al /
AO
R/w:—_/ Chip is selected
cS C D

CLK N

D \

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

31

Memory Timing Diagram

Address memory

aw N element 2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

32

Memory Timing Diagram

Q2 -

Al

A0

R/w:—Q — Specify a write operation
cs _/

CLK —— Data bus is driven low

D :—@ — (by another device)

Andrew H. Fagg: Embedded Real- 33
Time Systems: Microcontrollers

Memory Timing Diagram

<)L
Q) ——Clock goes low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

34

Memory Timing Diagram

Q2 \
A/ 4 Memory element 2
changes state to low

A0
R/W \
cs _/

CLK N

D \ S

Andrew H. Fagg: Embedded Real- 35
Time Systems: Microcontrollers

Memory Timing Diagram

Q2 L\
aMo |

] P Setup time: all
AO - inputs must be valid
RIW NI during this time
cs _/ i
CLK N
D N S

I I Andrew H. Fagg: Embedded Real- 36

Time Systems: Microcontrollers

Memory Timing Diagram

Q2 \
ammo . .
] P Hold time: all inputs
AO s must continue to be
R/W N\ valid
cs /1
oA
I R

Andrew H. Fagg: Embedded Real- 37
Time Systems: Microcontrollers

Memory Timing Diagram ||

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

38

Memory Timing Diagram ||

Q2

M/

A0

rRW /

CcS /-

CLK

D O — Data bus is not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

39

Memory Timing Diagram ||

CLK

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

40

Memory Timing Diagram ||

On chip select —

RW / drive data bus from

Q2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

41

Memory Timing Diagram ||

A/ What happens
now"?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

42

Memory Timing Diagram ||

Q2
Al /
AO Data bus

] returns to a
RW___/ non-driven
cS / } state
CLK X
D \ S

Andrew H. Fagg: Embedded Real- 43

Time Systems: Microcontrollers

Memory (cont)

* Memory is typically organized in groups of
bits (8 is most common)

* For example, an entire byte is usually
stored at a particular address

* This means that the data bus is “8*K bits
wide” (8*K parallel lines), where K is an
integer
— For our Atmels: K=1

Andrew H. Fagg: Embedded Real- 45
Time Systems: Microcontrollers

Components of a Microprocessor

» Registers (fast-access memory)
— General purpose: used for data storage

— Special purpose: used to control the behavior
of the microprocessor and/or the devices
connected to it

e |nstruction decoder

— Instructions are the primitive “actions” that the
microprocessor can perform

— Load/store to/from memory, AND, ADD,
JUMP, TEST, ...

Andrew H. Fagg: Embedded Real- 46
Time Systems: Microcontrollers

Components of a Microprocessor

Arithmetic Logical Unit (ALU)
Memory control logic

Timers

— Including timing mechanisms for instruction
fetch and execution

Interrupt processor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

47

Atmel Mega8

Data Bus 8-bit

An Example: the
«

Time Systems: Microcontrollers

Program Status
Flash - wa i
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General s
Register Purpose B SP|
Registrers v Unit
3
Instruction Watchdo
Decoder - 4 Y *™ Timer ?
o = NS
l £ 3
] w
7] o] ALU
@ L= — Analog
Control Lines = pe. Comparator
s 5
=) o
@ =
A= =
Q = /O Module1
Data ;
2 —p /O Module 2
srRam [' L
— /O Module n
EEPROM B
I/0 Lines ot
Andrew H. Fagg: Embedded Real- 48

Atmel Mega8

8-bit data bu

* Primary
mechanism
for data
exchange

Flash B

Program
Memory =

Program
Counter

Data Bus 8-bit

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General
Purpose SP|
Registrers Unit
Watchdog
Timer
Analog
Comparator
i'O Module1
i/O Module 2
i/O Module n
EEPROM
/O Lines
49

Atmel Mega8
«

32 general
purpose
registers

8 bits wide

« 3 pairs of
registers can
be combined

to give us 16
bit reqgisters

Data Bus 8-bit

:

Program
Counter

Flash -
Program
Memory

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing
Indirect Addressing

General
Purpose
Registrers

“~”

N
ALU

4

i

Data

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

IO Module1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM ot

i/O Module 2

i/O Module n

1/O Lines "t

50

Atmel Mega8
«

Special
purpose
registers

Program
Counter

Data Bus 8-bit

Status
and Control

Instruction
Register

Instruction
Decoder

« Control of the
Internals of
the
Processor

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Interrupt
32x8 —pr Unit
General
Purpose o SP|
Registrers v Unit
Watchdog
4 Y =3 Timer
N/
ALU
— Analog
Comparator
/0 Modulet
Data la—»{ /0 Module 2
SRAM G
— /O Module n
EEPROM 0
/O Lines -t
51

Atmel Mega8
«

Random Access
Memory (RAM)

» 1 KByte in size

Data Bus 8-bit

:

Flash
Program
Memory

il

Program
Counter

e

;

Register

Instruction

Control Lines

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General s
Purpose o SP|
Registrers o Unit
Watchdo
4 4 - Timer)
N/
ALU Analog
Comparator
IO Module1
i/O Module 2
i/O Module n
1/O Lines n
52

Atmel Mega8
«

Data Bus 8-bit

:

Program
Flash - Cotitar

Random Access program [

Memory (RAM) =
» 1 KByte In size

Control Lines

Indirect Addressing

Note: in high-end

Processors,
RAM is a
separate
component

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General s
Purpose o SP|
Registrers Unit
Watchdog
Timer
Analog
Comparator
i"O Module1
i'O Module 2
i/O Module n
/O Lines -t
53

Data Bus 8-bit

Atmel Mega8
«

:

Flash (EEPROM

* Program

storage

» 8 KByte In size

Flash Féfﬁ;g -
Program
Memory
Instruction
Register
¥
Instruction
Decoder -
(=] =
= ‘B
w w
i £ 3
Control Lines B =
< =
.- O
[&] O
@ =
) ©
a =

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General s
Purpose o SP|
Registrers v Unit
Watchdog
4 3 =3 Timer
N/
ALU
— Analog
Comparator
/0 Modulet
Data la—»{ /0 Module 2
SRAM G
— /O Module n
EEPROM 0
/O Lines -t
o4

Atmel Mega8
«

Flash (EEPROM)
* |[n this and man

microcontrollers,

program and
data storage is
separate

* Not the case In
our general
purpose
computers

Data Bus 8-bit

) :

Program Status
Flash e e
Program Counter and Control
Memory
Interrupt
32x8 f—ine Unit
Instruction General
Register Purpose SP|
Regist v Unit
¥
Instruct Watchdo
Decod o . L = Timer X
o c v
= ‘B
w w
@ ol ALU
@ = — Analog
Control Lines = § Comparator
= 5
[&] O
@ =
) ©
a £ /O Modulet
Sﬁiﬂ — i/O Module 2
— /O Module n
EEPROM
1/O Lines n
Andrew H. Fagg: Embedded Real- 95

Time Systems: Microcontrollers

Atmel Mega8
«

EEPROM

« Permanent
data storage

Data Bus 8-bit

:

Program Status
Flash - Ea o
Program Counter and Control
Memory =
l Interrupt
32x8 Unit
Instruction General s
Register Purpose B SP|
o Registrers o Unit
3
Instruction Watchdog
- 4 3 =% Timer
[73) w
17 o ALU
© = Analog
bl 3 = Comparator
< <
< e
— =]
=) o
@ =
= =
= £ *—®l /0 Module1
Data] /0 Module 2
SRAM b
5 N
— /O Module n
1/0 Lines t
Andrew H. Fagg: Embedded Real- 56

Time Systems: Microcontrollers

Atmel Mega8
«

Data Bus 8-bit

Arithmetic

Program
Counter

Status
and Control

e

Logical Unit

« Data inputs

Instruction
Decoder

from registers

« Control inputs
not shown
(derived from
iInstruction
decoder)

'

Control Lines

=
@
o
o
1=
3
<
T
@
=
(@]

Indirect Addressi

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Interrupt
32x8 Unit
General
Purpose SP|
Registrers Unit
® N
Watchdog
Timer
Analog
Comparator
i"O Module1
sfﬁiﬂ /0 Module 2
i/O Module n
EEPROM
/O Lines -t
57

Next Time

* Machine-level instructions (just a hint)
— Machine/assembly language

» Connecting C to assembly language
» Digital I/0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

58

Last Time

* Memory
» High-level view of a microprocessor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

59

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General s
Purpose bl SP|
Registrers v Unit
Watchdog
4 3 =3 Timer
N/
ALU
— Analog
Comparator
*—®l /0 Module1
Data ;
/O Module 2
sram [TV ¢
— /O Module n
EEPROM 0
/O Lines -t
60

Today

* Machine-level instructions (just a hint)
— Machine/assembly language

» Connecting C to assembly language
» Digital I/0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

61

Machine-Level Programs

Machine-level programs are stored as
sequences of machine instructions

« Stored in program memory

» Execution is generally sequential
(Instructions are executed in order)

» But — with occasional “jumps” to other
locations in memory

Andrew H. Fagg: Embedded Real- 62
Time Systems: Microcontrollers

Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jump conditionally (e.g., if the last test was
true)

Andrew H. Fagg: Embedded Real- 63
Time Systems: Microcontrollers

Atmel Mega8: Decoding Instructions

Program
counter

» Address of
currently
executing
instruction

Data Bus 8-bit

Program
Counter

Instruction

Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Time Systems: Microcontrollers

Andrew H. Fagg: Embedded Real-

Status
and Control
Interrupt
32x8 f—ine Unit
General
Purpose o SP|
Registrers v Unit
Watchdog
4 4 - Timer
N/
ALU
— Analog
Comparator
/O Modulet
Data a—»] /0 Module 2
SRAM B
— /O Module n
EEPROM of
1/O Lines n
64

Atmel Mega8: Decoding Instructions

Data Bus 8-bit

«

Instruction
register ™

e Stores the
machine-level
Instruction
currently being
executed

:

Flash B

Program
Memory =

Program
Counter

N

Instruction
Register

Status

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

and Control -3
Interrupt
32x8 Unit
General s
Purpose o SP|
Registrers v Unit
Watchdog
4 =3 Timer
N/
ALU
— Analog
Comparator
*—®l /0 Module1
Data ;
2 /O Module 2
sram [T :
— /O Module n
EEPROM 0
/O Lines -t
65

Atmel Mega8
«

Instruction
decoder

 Translates
current

iInstruction into
control signals
for the rest of

the processor

Data Bus 8-bit

:

Flash B

Program

Program
Counter

Memory =

;

Instruction
Register

7 ¥ N
Instruction

Decoder

o

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 f—ine Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
4 Y =% Timer
N/
ALU
— Analog
Comparator
[/O Module1
Data ;
/O Module 2
sram [TV ¢
— /O Module n
EEPROM of
1/O Lines n
66

Data Bus 8-bit

Atmel Mega8
«

:

Status register |y ==y

 Many machine

Instruction
Register

3

instructions

Instruction
Decoder

affect the state
of this register

'

Control Lines

Direct Addressing

Indirect Addressing

il

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 f—ine Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
4 Y =% Timer
N/
ALU
— Analog
Comparator
/O Modulet
< Data e /O Module 2
SRAM e
— /O Module n
EEPROM of
1/O Lines n
67

Some Mega8 Memory Operations

We refer to this as

LDS Rd, k4/ “Assembly Language”

» Load SRAM memory location Kk into
register Rd

+ Rd <- (K)

STS Rd, k
e Store value of Rd into SRAM location k
* (k) <- Rd

Andrew H. Fagg: Embedded Real- 75
Time Systems: Microcontrollers

Load SRAM Value to Register

LDS Rd, k

Data Bus 8-bit

«

:

Program Status
Flash - Ea
Program Counter and Control
Memory =
l 32x8
Instruction General
Register Purpose
Registrers
3
Instruction
Decoder -
(=] =
1= ‘B
w w
. o T
Control Lines B =
< e
e o
[[oF]
@ =
s =
(] £

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

SRAM

EEPROM ot

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

IO Module1

i/O Module 2

i/O Module n

1/O Lines "t

76

Store Register Val
«

STS Rd, k

ue to SRAM

Data Bus 8-bit

:

Program Status
Flash - Ea
Program Counter and Control
Memory =
l 32x8
Instruction General
Register Purpose
Registrers
3
Instruction
Decoder -
(=] =
1= ‘B
w w
. o T
Control Lines B =
< e
e o
[[oF]
@ =
s =
(] £

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

SRAM

EEPROM ot

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

IO Module1

i/O Module 2

i/O Module n

1/O Lines "t

77

Some Mega8 Arithmetic and

Logical Instructions
ADD Rd, Rr
 Rd and Rr are reqisters
» Operation: Rd <- Rd + Rr

 Also affects status reqister (zero, carry,
etc.)

ADC Rd, Rr
« Add with carry
e Rd<-Rd+Rr+C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

79

Add Two Register Values

ADD Rd, Rr

» Fetch register
values

Data Bus 8-bit

«

:

Flash
Program
Memory

Program
Counter

e

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General
Purpose o SP|
I Registrers I v Unit
Watchdog
Timer
— Analog
Comparator
/O Modulet
Data a—»] /0 Module 2
SRAM B
— /O Module n
EEPROM of
1/O Lines n
80

Add Two Register Values

Data Bus 8-bit

«

ADD Rd, Rr

» Fetch register
values

« ALU performs
ADD

:

Flash
Program
Memory

Program
Counter

e

;

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General
Purpose SP|
I Registrers I v Unit
Watchdog
Timer
— Analog
w Comparator
/O Modulet
Data a—»] /0 Module 2
SRAM
— /O Module n
EEPROM
1/O Lines
81

Data Bus 8-bit

Add Two Register Values
«

|
PE::ergm ‘ Fg;ﬁrrig ol anziq tgc:unirol il
ADD Rd, Rr Memory |«
. l 32x8 > '"tﬁrn'ﬂ ot
 Fetchregister [=& cos
+ I Registrers I Unit
values 'B‘“‘;I:ﬁ:r“ : Watchdog
l 5 7
w W
¢ A L U pe rfo rm S Control Lines g % Go&nn:;?gl
A D D 3 E /O Module1
® Resun iS o 22 e plel O Module 2
|
ertte n baC k to — . — /O Module n

register via the —
data bus \/

Andrew H. Fagg: Embedded Real- 82
Time Systems: Microcontrollers

Some Mega8 Arithmetic and
Logical Instructions

NEG Rd: take the two’s complement of Rd
AND Rd, Rr: bit-wise AND with a register
ANDI Rd, K: bit-wise AND with a constant
EOR Rd, Rr: bit-wise XOR

INC Rd: increment Rd

MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rd: multiply (signed)

Andrew H. Fagg: Embedded Real- 83
Time Systems: Microcontrollers

Some Mega8 Test Instructions

CP Rd, Rr
« Compare Rd with Rr
 Alters the status register

TST Rd
» Test for zero or minus
 Alters the status register

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

84

Some Mega8 Test Instructions

Modify the
status
register

«

Flash
Program
Me

Data Bus 8-bit

and Control

Status

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Interrupt
32x8 Unit
General
Purpose bl SP|
Registrers v Unit
Watchdog
y =3 Timer
N/
ALU
— Analog
Comparator
/0 Modulet
Data a—»| /0 Module 2
SRAM G
— /O Module n
EEPROM 0
/O Lines -t
85

Some Program Flow Instructions

RJMP k
« Change the program counter by k+1
« PC<-PC+k+1

BRCS k
» Branch if carry set
e If C==1then PC <- PC + k + 1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

86

Atmel Mega8: Decoding Instructions

Data Bus 8-bit

Results in a
change to
the program
counter

» May be
conditioned
on the status
register

Program
Counter

Status

Instruction
Register

3

Instruction
Decoder

'

Control Lines

Direct Addressing
Indirect Addressing

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

and Control -3
Interrupt
32x8 p—i Unit
General s
Purpose o SP|
Registrers v Unit
Watchdog
4 3 =3 Timer
N/
ALU
— Analog
Comparator
*—®l /0 Module1
0 SE;—?!:.?\A <l /0 Module 2
— /O Module n
EEPROM 0
1/0 Lines t
87

Connecting Assembly Language to C

« Our C compiler is responsible for
translating our code into Assembly
Language

« Today, we rarely program in Assembly
Language
— Embedded systems are a common exception

— Also: it is useful in some cases to view the
assembly code generated by the compiler

Andrew H. Fagg: Embedded Real- 92
Time Systems: Microcontrollers

An Example

A C code snippet:

If(B < A) {
D +=A;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

93

An Example

T

A C code snippet: |

If(B < A) {
D +=A;

L

ne Assembly :
DS R1 (A)

DS R2 (B)

CP R2, R1
BRGE 3

LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

94

An Example

The Assembly :
A C code snippet: LDS R1 (A) <«— PC
LDS R2 (B)
(B < A) { CP R2, R1
D +=A; BRGE 3
J LDS R3 (D)
Load the contents of memory ADD R3, R1
location A into register 1 STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B) < PC
(B < A) { CP R2, R1
D +=A; BRGE 3
J LDS R3 (D)
Load the contents of memory ADD R3, R1
location B into register 2 STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
f(B < A) { CPR2,R1 < PC
D += A; BRGE 3
J LDS R3 (D)
Compare the contents of register ADD R3, R1
2 with those of register 1 STS (D), R3
This results in a change tothe
Status register Aot T Enoeded o o

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A){ CP R2, R1

D +=A;

BRGE3 <+ PC
} /LDS R3 (D)
ADD R3, R1

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true STS (D), R3

Andrew H. Fagg: Embedded Real- 98
Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A){ CP R2, R1

D +=A;

BRGE 3
} / DS R3 (D)
ADD R3, R1

Branch if greater than or equal to
will jump ahead 3 instructions if STS (D), R3

rue <« PC

Andrew H. Fagg: Embedded Real- 99
Time Systems: Microcontrollers

if true

An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

(B < A){ CP R2, R1

D += A; | BRGE 3

| if not true DS R3 (D) <— PC

Not true: execute the next ADDR3, R1

instruction STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
(B < A) { CP R2, R1
D +=A; BRGE 3
} LDS R3 (D) <« PC
Load the contents of memory ADD R3, R1
location D into register 3 STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
if(B < A) { CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
Add the values in «+—ADD R3, R1 «— PC
Gtore he resutin STS (D), R3
register3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
f(B < A) { CP R2, R1
D += A BRGE 3
J LDS R3 (D)
Store the value in register ADD R3, R

3 back to memory
location D

+———_3TS (D), R3 « PC

Andrew H. Fagg: Embedded Real- 103
Time Systems: Microcontrollers

Summary

Instructions are the “atomic” actions that are taken
by the processor

* One line of C code typically translates to a
sequence of several instructions

* |In the mega 8, most instructions are executed Iin
a single clock cycle

The high-level view is important here: don't worry
about the detalls of specific instructions

Andrew H. Fagg: Embedded Real- 104
Time Systems: Microcontrollers

Atmel Mega8 Basics

« Complete, stand-

alone computer
* QOurs is a 28-pin

package

Most pins:

— Are used for
iInput/output

— How they are used

IS configurable

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1] 3 26 [1PC3 (ADC3)
(INTO) PD2 [4 25 [1PC2 (ADC2)
(INT1) PD3[]5 240 PC1 (ADCH)
(XCK/TO) PD4 [6 23 [0 PCO (ADCO)
vee 7 22 [1GND
GND[]8 21 [J AREF
(XTAL1/TOSC1) PB6]9 20 O AvCC
(XTAL2/TOSC2) PB7 [] 10 19 |1 PB5 (SCK)
(T1) PD5] 11 18 [1 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 [] 13 16 [0 PB2 (SS/0C1B)
(ICP1) PBO [] 14 15 [1 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

111

Atmel Mega8 Basics

. PDIP
Power (we will use -
+ 5V) (RESET) PC6 [1 28 |1 PC5 (ADC5/SCL)
(RXD) PD0O 2 27 [PC4 (ADC4/SDA)
(TXD) PD1[3 26 |1 PC3 (ADC3)
(INTO) PD2[] 4 25 [PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADCA)
KIT 6 23 |11 PCO (ADCO)
(VCC [> 22 [1GND
8 21 J AREF
(XTAL1/TOSC1) PB6]9 20 L AVCC
(XTAL2/TOSC2) PB7[] 10 19 |1 PB5 (SCK)
(T1) PD5 [11 18 1 PB4 (MISO)
(AINO) PD6 [} 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 [J PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 [0 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 112

Time Systems: Microcontrollers

Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6] 1 28 |1 PC5 (ADC5/SCL)
(RXD) PD0O 2 27 [PC4 (ADC4/SDA)
(TXD) PD1[3 26 |1 PC3 (ADC3)
INTO) PD2] 4 25 [PC2 (ADC2)
5 24 [PC1 (ADC1)
CK/TO) PDA 0 6~ : (ADCO)
22 | 1GND
(GND] 8) 2 EF
(XTAL1/TOSC1) P 9 20 JAVCC
(XTAL2/TOSC2) PB7[] 10 19 |1 PB5 (SCK)
(T1) PD5 [11 18 |1 PB4 (MISO)
(AINO) PD6 [} 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 [J PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 [0 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 113

Time Systems: Microcontrollers

Atmel Mega8 Basics

Reset _

Bring low to reset
the processor

In general, we will
tie this pin to high
through a pull-up
resistor (10K ohm)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

PDIP
N
CRESET) PCo] 1 28 |1 PC5 (ADC5/SCL)
W 27 [0 PC4 (ADC4/SDA)
(TXD) PD1[]3 26 [1 PC3 (ADC3)
(INTO) PD2] 4 25 [1PC2 (ADC2)
(INT1) PD3 5 24 [1PC1 (ADC1)
(XCK/TO) PD4 [6 23 [PCO (ADCO)
vee Oz 22 [1GND
GND[]8 21 [1 AREF
(XTAL1/TOSC1) PB6 []9 20 [J AvCC
(XTAL2/TOSC2) PB7 [] 10 19 [PB5 (SCK)
(T1) PD5] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 |1 PB3 (MOSI/OC2)
(AIN1) PD7 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO] 14 15 [1 PB1 (OC1A)
114

Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1] 3 26 [1PC3 (ADC3)
(INTO) PD2 [4 25 [1PC2 (ADC2)
(INT1) PD3[]5 240 PC1 (ADCH)
(XCK/TO) PD4 [6 23 [0 PCO (ADCO)
vee 7 22 [1GND
GND 8 21 [J AREF
(XTAL1/TOSC1) PB6 J 20 4
(XTAL2/TOSC2) PB7 ED 711 PB5 (SCK)
5] 11 8 [1 PB4 (MISO)
(AINO) PD6 [] 12 1 PB3 (MOSI/OC2)
(AIN1) 13 1 PB2 (SS/0C1B),
(ICP() PBO] 1] PB1 (OC1A

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

115

Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD) PD1 [
(INTO) PD2 [
(INT1) PD3 [

(XCK/T0) PD4 [

vee D

GND [

PB6 [
PB7 [

PD5 [

PD6 []

PD7 [

PBO [

(XTAL1/TOSCH
(XTAL2/TOSC2
(T1

(AINO

(AIN1

(ICP1

— e e e e e

S

19 L1 PB5

(SCK)
18 [0 PB4 (MISO)
(
(

17 [J PB3 (MOSI/OC2)
16 [0 PB2 (SS/OC1B)
15 [JPB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

116

Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP

(RXD) PDO
(TXD) PD1 [

)
)
(INTO) PD2
)
)

(INT1) PD3 [
K/TO) PD4
C

GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC
(T1) PD5 O
(AINO) PD6 [
AIN1) PD7 [

S

28
27
26
25
24
23
22
21
20
19
18
17
16
15

1PC5
T PC4
1 PC3
1 PC2
1 PCH
1 PCO
1GND
] AREF
AVCC
1 PB5 (SCK)
1 PB4 (MISO)
1 PB3 (MOSI/OC2)
(SS,
(

ADC5/SCL)
ADC4/SDA)
ADC3)
ADC2)
ADCH1)
ADCO)

— — — — p— —

1 PB2 (SS/0C1B)
1PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

117

A First
Circuit

28 27 26 25 24 23 22
ENESESEREEEEE

21 20 19 18 17 16 15
ENEEENERENEEE

PC5 PC3 PCl1
PC4 PC2

) Atmel

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2
PCO AREF PBS

GND PB7
VCC PB6

PB3 PBI
Mega8

PD6 PB0
PD5 PD7

NN EREREREEE
2 3 4 5 6 7

uguuuuuu

I 8 10 11 12 13 14
| N
. MW—
+5V 200 ohm
ST

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

118

Atmel Mega8
«

Data Bus 8-bit

|
e “ o g:‘a:: an Sta:fiuns ro
Control the pins |y [T Lo
l " Internrppt
t h rO U g h t h e hg;g;::;c:n Ei%;i%é 4 l;,::
< Registrers Unit
/O modules , —
ecoder g} g v Timer
* At the heart, s RN i Wae—
nirol Lines E E
these are Z—
° = 1 /10 Modulet
registers : =D
t h t » Sﬁiﬂ el /0 Module 2
a a re i odule n
implemented EEPROM |a -
USing D flip- I/0 Lines ‘v
Andrew H. Fagg: Embedded Real- 119

flops!

Time Systems: Microcontrollers

/O Pin Implementation

A

Single bit of < . |

° D le
PO RT B UT<—|_ -

RESET

A
VY
|
O
>

o SLEEP r RRx

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

The physical
pin

A

<

PUD

(=

l & o D q'

DDxn

T, 9
| _|— WDx

RESET

JA

SLEEP

PUD: PULLUP DISABLE
SLEEP: SLEEP CONTROL
clk,q: IO CLOCK

I D Q
I |— L T [> [+] I
I_ ———— _: clk o
WDx: WRITE DDRx
RDx: READ DDRx
WPx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

DDRB

 Defines
whether
this Is an

Pxn

PUD

—<

AAA
LA A J

(=

Input or an
output

L~
& . 4 rd! ’ N * o D
N PORTxn <
Gu.n <
| _l— WPx
RESET
) SLEEP r RRx
V
SYNCHRONIZER
e e] RPx
I oD @ D O _I_V
I PINxn I
I |— L T P> =
I } clkyo
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEF: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

PORTB A (= |

* Defines the
value that
s written _
out to the
pin (if it is :

an output) st —
e
L{ et R

DATA BUS

PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

Tristate buffer < (= l

 When this
pin Is an
output pin, it

allows the = . ,
PORTB flip- g
flop to drive - —

DATA BUS

. L
the pln SYNCHRONIZER
—_————— — RPx
I D a D C _I_V
I PiNxn I
I |_L ks [> (o]
I_ ———— _: clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPXx: WRITE PORTx
clk,o; VO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

A

Input flip-flop A=< = l

_|— WDx

Pxn

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

Last Time

* Memory behavior
» Microprocessor components

* Manipulating the state of pins
— Registers: DDRx, PORTx, and PINx

Andrew H. Fagg: Embedded Real- 126
Time Systems: Microcontrollers

/O Pin Implementation

Pxn

A

<

PUD

(=

l o @ D lef

DDxn

T, 9
| _|— WDx

RESET
1.
< — RDx
L’f'
& . 4 rd! ’ N * o D
N PORTxn <
UU.H <
| _l— WPx
RESET
» SLEEP r RRx
V
SYNCHRONIZER
—_——_————— RPx
I D Q D © _I_V
I PiNxn I
I |—L ks > T
I_ —— I_ _: clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,o: /O CLOCK RRx: READ PORTx REGISTER
; RPx: READ PORTx PIN

DATA BUS

Today

 Homework 2 solution set has been posted

» Getting into the hardware
— Compiling and downloading code
— Manipulating digital I/O pins
 Bit Masking

Andrew H. Fagg: Embedded Real- 128
Time Systems: Microcontrollers

Bit Manipulation

PORTB is a register

« Controls the value that is output by the set
of port B pins

« But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded Real- 129
Time Systems: Microcontrollers

Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded Real- 130
Time Systems: Microcontrollers

Bit-Wise Operators

It A and B are bytes, what does this code
mean?

C = A & Bj;

Andrew H. Fagg: Embedded Real- 131
Time Systems: Microcontrollers

Bit-Wise Operators

01011110 A

10011011 B

? C=A&B

Andrew H. Fagg: Embedded Real- 132
Time Systems: Microcontrollers

Bit-Wise Operators

0101111

1001101

o A

W B

C=A&B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

133

Bit-Wise Operators

0101111/6\ A

1001101

\1/ B

v
0 C=A&B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

134

Bit-Wise Operators

O10111A\p A

100110\1/1 B

$O C=A&B

Andrew H. Fagg: Embedded Real- 135
Time Systems: Microcontrollers

Bit-Wise Operators

01011110 A

10011011 B

00011010 C=A&B

Andrew H. Fagg: Embedded Real- 136
Time Systems: Microcontrollers

Bit-Wise Operators

Other Operators:
* OR: |

« XOR: A

* NOT: ~

Andrew H. Fagg: Embedded Real- 137
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Andrew H. Fagg: Embedded Real- 138
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Andrew H. Fagg: Embedded Real- 139
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 07

Andrew H. Fagg: Embedded Real- 140
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A & OxFB;

or

A=A & ~4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

141

/O Pin Implementation

A

Single bit of < . |

° D le
PO RT B UT<—|_ -

RESET

A
VY
|
O
>

o SLEEP r RRx

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

A First
Program

Flash the
LEDs at a
regular
iInterval

« How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 ©PD4 GND PB7 PD6 PBO
PC6 PDl PD3 VCC PB6 PD5 PD7
NN EREEEREERRpEpEEEEE
1] 2 3 4 5 6 7 0 10 11 12 13 14
LT
WWA s ¥
» WA
+5V 200 ohm
Andrew H. __ ¥ e

Time Systems: Microcontrollers

A First
Program

How do we
flash the LED
at a regular
interval?

* We toggle the

state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PBS5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PD1 PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 7] 8§ 9 10 11 12 13 14
LT
YWW s ¥
. WA
+5V 200 ohm
Andrew H. T

Time Systems: Microcontrollers

A First Program

main () {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

145

A Second Program

main () {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

What does this program do?

Andrew H. Fagg: Embedded Real- 146
Time Systems: Microcontrollers

A Second Program

main () {
DDRB = OxFF; // Set all port B pins as outputs

while (1) {
PORTB = PORTB © 0x1; // XOR bit 0 with 1
delay_ms (500) ; // Pause for 500 msec

PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;
PORTB = PORTB © 0x2; // XOR bit 1 with 1
delay_ms (250) ;

Flashes LED on PB1 at 1 Hz
on PB0: 0.5 Hz

Andrew H. Fagg: Embedded Real- 147
Time Systems: Microcontrollers

Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional | Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

On to Project 1...

Andrew H. Fagg: Embedded Real- 149
Time Systems: Microcontrollers

Last Time

» Digital I/0
« Compiling & downloading for the mega8s
* Project 1

Andrew H. Fagg: Embedded Real- 150
Time Systems: Microcontrollers

Today

Homework 2

A bit more on bit manipulation
Digital input

Serial communication

Project 1

Andrew H. Fagg: Embedded Real- 151
Time Systems: Microcontrollers

More Bit Masking

* Suppose we have a 3-bit number (so
values 0 ... 7)

* Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

» How do we express this in code?

Andrew H. Fagg: Embedded Real- 152
Time Systems: Microcontrollers

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7
PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

Andrew H. Fagg: Embedded Real- 153
Time Systems: Microcontrollers

Bit Masking
M 1 et
<E§%?3::(D§E§> // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short 1s 8-bits wide

val = comm&nd _to robot; // A value between 0 and 7

PORTBR = (PORTB & 0xC7) // Set the current B3-B5 to O0Os
| ((val\& 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5)
}

B3-B7 are outputs; all others are still inputs (could
be different depending on how other pins are used)

Andrew H. Fagg: Embedded Real- 154
Time Systems: Microcontrollers

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to _robot; // A value between 0 and 7

// Set the current B3-B5 to 0Os
// OR with new values (shifted
// to fit within B3-B5

PORTB

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Andrew H. Fagg: Embedded Real- 155
Time Systems: Microcontrollers

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to _robot; // A value between 0 and 7
PORT (PORLB & // Set the current B3-B5 to Os
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

Substitute an arbitrary value into these
bits

Andrew H. Fagg: Embedded Real- 156
Time Systems: Microcontrollers

Bit Masking

main () {
DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short wval; // A short is 8-bits wide

val = command_to _robot; // A value between 0 and 7
(PORTB & 0xCT7) // Set the current B3-B5 to O0Os
(val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5

And use the result to change the output
state of port B

Andrew H. Fagg: Embedded Real- 157
Time Systems: Microcontrollers

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = (val & 0xCO) >> o6;

Andrew H. Fagg: Embedded Real- 158
Time Systems: Microcontrollers

Reading the Digital State of Pins
malDélR\ [: O@ // Set pins B3, B4, BS as outputs

All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide
val = PINB;

outval = & 0xCO) >> 6;

B6 and B7 are configured as inputs

Andrew H. Fagg: Embedded Real- 159
Time Systems: Microcontrollers

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

Qal = PINB;

outval = (vyl & 0xCO) >> 6;

Read the value from the port

Andrew H. Fagg: Embedded Real- 160
Time Systems: Microcontrollers

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

outval =\(val & 0xCO) J>> 6;
} 7

“Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded Real- 161
Time Systems: Microcontrollers

Reading the Digital State of Pins

main () {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short wval, outval; // A short is 8-bits wide

val = PINB;

}

Right shift the result by 6 bits — so the value of B6
and B7 are now in bits 0 and 1 of “outval”

Andrew H. Fagg: Embedded Real- 162
Time Systems: Microcontrollers

A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O0 = 0; // Set bit 0 to 0

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OxFE;

or
PORTA &= ~1;

or
PORTA = PORTA & ~1;

Andrew H. Fagd: Embedded Real- 163
Time Systems: Microcontrollers

Putting It All Together

* Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

* Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
it from your circuit

Andrew H. Fagg: Embedded Real- 164
Time Systems: Microcontrollers

Compiling and Downloading Code

» We will work through the detalils on
Tuesday. Before then:

— See the Atmel HowTo (pointer from the
schedule page)

— Windoze: Install AVR Studio and WinAVR
— 0OS X: Install OSX-AVR

« We will use ‘make’ for compiling and downloading

— Linux: Install binutils, avr-gcc, avr-libc, and
avrdude
« Same as OS X

Andrew H. Fagg: Embedded Real- 165
Time Systems: Microcontrollers

