
Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

1

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

2

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal (e.g., project 1)
• Analog
• Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

3

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle

• Resolution: ~.5 degrees, 1
cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

9

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

10

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

11

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

12

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that data
is coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

13

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

14

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

18

One Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -

15 (-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

19

RS232-C
Originally intended to connect:
• Data Terminal Equipment (DTE)

– Teletypes

• to Data Communication Equipment
(DCE)
– Modems

Now that we are connecting a computer to
some peripheral, it is not always clear
which is the DTE and which is the DCE

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

20

RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

• Pin 2: receive (to DTE from DCE)
• Pin 3: transmit (from DTE to DCE)
• Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

24

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

• Handles all of the bit-level manipulation
• You only have to interact with it on the

byte level

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

25

Mega8 UART C Interface

OUlib support:
ioinit(): initialize the port @9600 bits

per second
getchar(): receive a character
kbhit(): is there a character in the buffer?
putchar(): put a character out to the port

See the Atmel HOWTO

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

Character Representation

• A “char” is just an 8-bit number
• In some cases, we just interpret it

differently.
• But: we can still perform mathematical

operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

27

Character
Representation:

ASCII

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

28

Mega8
UART

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

29

Mega8
UART

• Transmit pin
(PD1)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Writing a Byte to the Serial Port

putchar(‘A’);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Transmit

putchar(‘A’);
01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Transmit

When UART
is ready, the
buffer
contents are
copied to
the shift
register

01000001

01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

34

Transmit

The least
significant bit
(LSB) of the
shift register
determines
the state of
the pin

01000001 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

35

Transmit

After a delay, the
UART shifts
the values to
the right

x = value doesn’t
matter

x0100000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

36

Transmit

Next shift

xx010000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

37

Transmit

Several shifts
later…

xxxxxx01 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

38

Last Time

• Bit manipulation
• Serial communication

– Asynchronous serial
– Mega8 hardware support

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

39

Today

• More on mega8 serial
• Circuit building in practice
• Project 2

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

40

Administrivia

• Homework 3 is posted (already).
– Due in one week

• Project 2 out today.
– Due March 29th (but don’t wait!)
– One heli ready now; other units will follow in

the next few days
– Group assignments will be completed tonight:

• Announcement on D2L

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

41

Receive

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

42

Receive

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

43

Receive

• “1” on the pin
• Shift register

initially in an
unknown
state xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

44

Receive

“1” is
presented to
the shift
register

xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

45

Receive

“1” is shifted
into the most
significant bit
(msb) of the
shift register 1xxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

46

Receive

Next bit is
shifted in

11xxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

47

Receive

And the next
bit…

011xxxxx 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

Receive

And the 8th bit

01101011 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

49

Receive

Completed byte
is stored in
the UART
buffer

01101011 0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

50

Reading a Byte from the Serial Port

int c;

c=getchar();

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Receive

getchar()
retrieves this
byte from the
buffer

0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

52

Reading a Byte from the Serial Port

int c;

c=getchar();

Note: getchar() “blocks” until a byte is
available

• Will only return with a value once one is
available to be returned

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Processing Serial Input

kbhit() tells us whether a byte is ready to be read

int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Mega8 UART C Interface

printf(): formatted output
scanf(): formatted input

See the LibC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

55

Serial I/O by Polling
int c;

while(1) {

if(kbhit()) {

// A character is available for reading

c = getchar();

<do something with the character>

}

<do something else while waiting>

}

