Input/Output Systems

Processor needs to communicate with other
devices:

* Receive signals from sensors
« Send commands to actuators
* Or both (e.g., disks, audio, video devices)
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/O Systems

Communication can happen in a variety of
ways:

» Binary parallel signal (e.g., project 1)

* Analog

 Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm



An Example:
SICK Laser Range Finder

Laser iIs scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz
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Serial Communication

« Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.
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Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

» Typically, each side has a clock to tell it
when to write/read a bit

* |[n some cases, the sender will also send a
clock signal (on a separate line)

* |In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins
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Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

 This reduces the number of signal lines

* Bidirectional transmission, but the two
halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?
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Asynchronous Serial

Communication

How can the two sides agree that the data is
valid?

« Must both be operating at essentially the
same transmit/receive frequency

» A data byte is prefaced with a bit of
iInformation that tells the receiver that data
IS coming

 The receiver uses the arrival time of this
start bit to synchronize its clock
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A Typical Data Frame

01234567

start stop
hit bits
The stop bits allow the receiver to
immediately check whether this is a valid
frame

* If not, the byieig-ihrowa away 13

ime Systems: Serial Comm



Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

« Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)

— Very common in computing devices
o Software solutions in libraries

Andrew H. Fagg: Embedded Real- 14
Time Systems: Serial Comm



One Standard: RS232-C

Defines a logic encoding standard:

« “High” is encoded with a voltage of -5 to -
15 (-12 to -13V is typical)

» “Low” Is encoded with a voltage of 5to 15
(12 to 13V is typical)
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RS232-C

Originally intended to connect:

« Data Terminal Equipment (DTE)
— Teletypes

 to Data Communication Equipment
(DCE)

— Modems

Now that we are connecting a computer to
some peripheral, it is not always clear
which is thealdl i=andadhigh is the DCE

Time Systems: Serial Comm



RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

* Pin 2: receive (to DTE from DCE)
* Pin 3: transmit (from DTE to DCE)
* Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)
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RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

« Handles all of the bit-level manipulation

* You only have to interact with it on the
byte level

Andrew H. Fagg: Embedded Real- 24
Time Systems: Serial Comm



Mega8 UART C Interface

OUlib support:

ioinit () : Initialize the port @9600 bits
per second
getchar () : receive a character

kbhit () : Is there a character in the buffer?
putchar () : put a character out to the port

See the Atmel HOWTO
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Character Representation

* A “char” is just an 8-bit number

* [n some cases, we just interpret it
differently.

» But: we can still perform mathematical
operations on it
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Binary Dec | Hex Glyph Binary Dec Hex Glyph Binary |Dec Hex Glyph

010 0000| 32 | 200 5P 100 0000| &4 40 @ 110 0000| 96 | &0
010 0001 33 | 21 ! 100 0001 | 65 | 41 A 110 0001| 97 @ 61 a
010 0010 34 @ 22 ! 100 0010| 66 | 42 B 110 0010| 98 62 b
010 0011 35 | 23 # 100 0011 | &7 | 43 C 110 0011} 99 &3 =
010 0100| 36 | 24 3 100 0100| 68 44 D 110 0100|100 &4 d
0100101| 37 | 25 | % 100 0101| 69 | 45 E 110 0101|101 65 e
C h a raCte r 010 0110| 38 | 26 & 100 0110| 70 | 46 F 110 0110|102 b6 T
010 0111 39 27 ] 1000111 71 | 47 | G 110 0111|103 | &7 g
u 010 1000 | 40 @ 28 [ 100 1000| 72 48 H 110 1000|104 @ &8 h
R e p re S e n tat I O n - 010 1001 | 41 | 29 ) 100 1001| 73 | 49 [ 110 1001|105 &9 i
" 010 1010 42 | 2A 100 1010| 74 | 4A J 110 1010|106 @ 6A ]
010 1011 43 | 2B + 100 1011| 75 | 4B K 110 1011|107 6B k
A S C I I 010 1100 44 @ 2C i 100 1100| 76  4C L 110 1100|108 6C |
010 1101 45 | 2D - 100 1101 77 1 4D M 110 1101/109 6D m
010 1110 46 | 2E . 100 1110| 78 4E N 110 1110{110 | 6E n
010 1111 47 | 2F f 100 1111| 79 | 4F 0 110 1111|111 6F o
011 0000 | 48 | 30 0 101 0000 | 80 | 50 P 111 0000|112 70 p
011 0001 49 | 31 1 101 0001| 81 | 51 Q 111 0001|113 71 q
011 0010| 50 | 32 2 101 0010| 82 | 52 R 111 0010|114 72 r
011 0011 51 | 33 3 101 0011| 83 | 53 5 111 0011|115 73 s
011 0100 52 | 34 4 101 0100| 84 54 T 111 0100|116 74 t
011 0101| 53 | 35 5 101 0101| 85 | 55 u 111 0101|117 75 u
011 0110 54 | 36 b 101 0110 86 | 56 L} 111 0110|118 76 v
0110111 | 55 | 37| 7 101 0111 87 | 59 | W 111 0111{119 77 | w
011 1000| 56 | 38 B 101 1000| 88 58 X 111 1000|120 78 X
011 1001 57 39 9 101 1001| 89 59 Y 111 1001|121 79 y
011 1010| 58 | 3A : 101 1010| 90  5A Z 111 1010|122 | 7A z
011 1011 59 | 3B . 101 1011| 91 | 5B [ 111 1011|123 7B {
011 1100 60 | 3C < 101 1100| 92 | 5C \ 111 1100|124 7C |
Andrew H. Fag‘ 011 1101| 61 | 3D = 101 1101| 93 | 5D ] 111 1101|125 7D ]
011 1110 62 | 3E| = 101 11101 94 | 5E Y 111 1110{126 | 7E ~
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Mega8
UART
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Mega8
UART

* Transmit pin
(PD1)
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Mega8
UART
* Transmit pin
(PD1)

 Transmit
shift register
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Writing a Byte to the Serial Port

putchar ( ‘A" ) ;
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UBRR[H:L]
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UBRR[H:L]
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UBRR[H:L]
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UBRR[H:L]
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Transmit

Next shift
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Transmit

Several shifts
later...
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Last Time

 Bit manipulation

» Serial communication
— Asynchronous serial
— Mega8 hardware support

Andrew H. Fagg: Embedded Real-
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Today

* More on mega8 serial
» Circuit building in practice
* Project 2

Andrew H. Fagg: Embedded Real-
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Administrivia

 Homework 3 Is posted (already).
— Due in one week

* Project 2 out today.
— Due March 29t (but don’t wait!)

— One heli ready now; other units will follow in
the next few days

— Group assignments will be completed tonight:
« Announcement on D2L
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Recelve

* Receive pin
(PDO)

* Receive
shift register
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Recelve

* “1” on the pin

 Shift register
initially in an
unknown
state
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Recelve

“1”71s
presented to
the shift
register
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Recelve

Next bit is
shifted in
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Recelve

And the next
bit...
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Recelve

And the 8™ bit
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Reading a Byte from the Serial Port

int c;

c=getchar () ;
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Reading a Byte from the Serial Port

int c;
c=getchar () ;

Note: getchar() “blocks” until a byte is
available

* Will only return with a value once one is
avalilable to be returned
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Processing Serial Input

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();

<do something with the character>

}

<do something else while waiting>

J

kbhit() tells us whether a byte is ready to be read

Andrew H. Fagg: Embedded Real- 53
Time Systems: Serial Comm



Mega8 UART C Interface

printf () : formatted output
scanf () : formatted input

See the LibC documentation or the AVR C
textbook
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Serial I/0O by Polling

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>
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