Input/Output Systems

Processor needs to communicate with other
devices:

* Receive signals from sensors
« Send commands to actuators
* Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

/O Systems

Communication can happen in a variety of
ways:

» Binary parallel signal (e.g., project 1)

* Analog

 Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

An Example:
SICK Laser Range Finder

Laser iIs scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 3
Time Systems: Serial Comm

Serial Communication

« Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

» Typically, each side has a clock to tell it
when to write/read a bit

* |[n some cases, the sender will also send a
clock signal (on a separate line)

* |In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real- 10
Time Systems: Serial Comm

Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

 This reduces the number of signal lines

* Bidirectional transmission, but the two
halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real- 11
Time Systems: Serial Comm

Asynchronous Serial

Communication

How can the two sides agree that the data is
valid?

« Must both be operating at essentially the
same transmit/receive frequency

» A data byte is prefaced with a bit of
iInformation that tells the receiver that data
IS coming

 The receiver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real- 12
Time Systems: Serial Comm

A Typical Data Frame

01234567

start stop
hit bits
The stop bits allow the receiver to
immediately check whether this is a valid
frame

* If not, the byieig-ihrowa away 13

ime Systems: Serial Comm

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

« Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)

— Very common in computing devices
o Software solutions in libraries

Andrew H. Fagg: Embedded Real- 14
Time Systems: Serial Comm

One Standard: RS232-C

Defines a logic encoding standard:

« “High” is encoded with a voltage of -5 to -
15 (-12 to -13V is typical)

» “Low” Is encoded with a voltage of 5to 15
(12 to 13V is typical)

Andrew H. Fagg: Embedded Real- 18
Time Systems: Serial Comm

RS232-C

Originally intended to connect:

« Data Terminal Equipment (DTE)
— Teletypes

 to Data Communication Equipment
(DCE)

— Modems

Now that we are connecting a computer to
some peripheral, it is not always clear
which is thealdl i=andadhigh is the DCE

Time Systems: Serial Comm

RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

* Pin 2: receive (to DTE from DCE)
* Pin 3: transmit (from DTE to DCE)
* Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

20

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

« Handles all of the bit-level manipulation

* You only have to interact with it on the
byte level

Andrew H. Fagg: Embedded Real- 24
Time Systems: Serial Comm

Mega8 UART C Interface

OUlib support:

ioinit () : Initialize the port @9600 bits
per second
getchar () : receive a character

kbhit () : Is there a character in the buffer?
putchar () : put a character out to the port

See the Atmel HOWTO

Andrew H. Fagg: Embedded Real- 25
Time Systems: Serial Comm

Character Representation

* A “char” is just an 8-bit number

* [n some cases, we just interpret it
differently.

» But: we can still perform mathematical
operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

Binary Dec | Hex Glyph Binary Dec Hex Glyph Binary |Dec Hex Glyph

010 0000| 32 | 200 5P 100 0000| &4 40 @ 110 0000| 96 | &0
010 0001 33 | 21 ! 100 0001 | 65 | 41 A 110 0001| 97 @ 61 a
010 0010 34 @ 22 ! 100 0010| 66 | 42 B 110 0010| 98 62 b
010 0011 35 | 23 # 100 0011 | &7 | 43 C 110 0011} 99 &3 =
010 0100| 36 | 24 3 100 0100| 68 44 D 110 0100|100 &4 d
0100101| 37 | 25 | % 100 0101| 69 | 45 E 110 0101|101 65 e
C h a raCte r 010 0110| 38 | 26 & 100 0110| 70 | 46 F 110 0110|102 b6 T
010 0111 39 27] 1000111 71 | 47 | G 110 0111|103 | &7 g
u 010 1000 | 40 @ 28 [100 1000| 72 48 H 110 1000|104 @ &8 h
R e p re S e n tat I O n - 010 1001 | 41 | 29) 100 1001| 73 | 49 [110 1001|105 &9 i
" 010 1010 42 | 2A 100 1010| 74 | 4A J 110 1010|106 @ 6A]
010 1011 43 | 2B + 100 1011| 75 | 4B K 110 1011|107 6B k
A S C I I 010 1100 44 @ 2C i 100 1100| 76 4C L 110 1100|108 6C |
010 1101 45 | 2D - 100 1101 77 1 4D M 110 1101/109 6D m
010 1110 46 | 2E . 100 1110| 78 4E N 110 1110{110 | 6E n
010 1111 47 | 2F f 100 1111| 79 | 4F 0 110 1111|111 6F o
011 0000 | 48 | 30 0 101 0000 | 80 | 50 P 111 0000|112 70 p
011 0001 49 | 31 1 101 0001| 81 | 51 Q 111 0001|113 71 q
011 0010| 50 | 32 2 101 0010| 82 | 52 R 111 0010|114 72 r
011 0011 51 | 33 3 101 0011| 83 | 53 5 111 0011|115 73 s
011 0100 52 | 34 4 101 0100| 84 54 T 111 0100|116 74 t
011 0101| 53 | 35 5 101 0101| 85 | 55 u 111 0101|117 75 u
011 0110 54 | 36 b 101 0110 86 | 56 L} 111 0110|118 76 v
0110111 | 55 | 37| 7 101 0111 87 | 59 | W 111 0111{119 77 | w
011 1000| 56 | 38 B 101 1000| 88 58 X 111 1000|120 78 X
011 1001 57 39 9 101 1001| 89 59 Y 111 1001|121 79 y
011 1010| 58 | 3A : 101 1010| 90 5A Z 111 1010|122 | 7A z
011 1011 59 | 3B . 101 1011| 91 | 5B [111 1011|123 7B {
011 1100 60 | 3C < 101 1100| 92 | 5C \ 111 1100|124 7C |
Andrew H. Fag‘ 011 1101| 61 | 3D = 101 1101| 93 | 5D] 111 1101|125 7D]
011 1110 62 | 3E| = 101 11101 94 | 5E Y 111 1110{126 | 7E ~

Time Systen
011 1111/ &3 | 3F ? 101 1111/ 95 | 5F

Mega8
UART

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

¥ ml CONTROL oK
________ ‘7 T T T T T T T T T 77 Transmitter |
ey X |
UDR (Transmit) CONTROL |
* PARITY |
|" GENERATOR
w PIN |
S .
2 TRANSMIT SHIFT REGISTER controL ™ ™@
<L
Qi e Vi— L
g Receiver |
» clock RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER e YRRy caliRo: 4J|— RxD
¥ |
PARITY |
HAR {Fagatics CHECKER |
|
UCSRA UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

28

Mega8
UART

* Transmit pin
(PD1)

UBRR[H:L]

0sC

Y

BAUD RATE GENERATOR

| sYNC LOGIC BIN

a CONTROL

DATABUS

|
|
|
|
|
|
|
-J-| XCK
|

TxD

Receiver |

» clock RX |

RECOVERY contRoL |

I—- I_ |
DATA PIN

—:D. RECEIVE SHIFT REGISTER 3 coremn: 4J|— RxD

¥ |

PARITY |

HAR {Reneke) CHECKER |

|

UCSRB UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

29

Mega8
UART
* Transmit pin
(PD1)

 Transmit
shift register

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

XCK
h] CONTROL
1 # 7777 Transmitter |
_— ™ |
UDR (Transmit) CONTROL |
* PARITY |
|" GEMERATOR |
PIN

TRANSMIT SHIFT REGISTER R i
|
————————————————————— P 1
eceliver |
& clLock R |
RECOVERY COMTROL |
I—- |_ |

DATA PIN

—:D. RECEIVE SHIFT REGISTER RECBVERY ORI 4J|— RxD
¥ |
PARITY |
HAR {Fagatics CHECKER |
|

UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Writing a Byte to the Serial Port

putchar (‘A") ;

Andrew H. Fagg: Embedded Real- 31
Time Systems: Serial Comm

UBRR[H:L]

Transmit

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

putchar (‘A") ;

DATABUS

ml CONTROL it
| T T T T T T T T T T T T T 7 Transmitter |
| X |
| 01000001 controL | |
- PARITY |
| ¥ GENERATOR |
| PIN
| TRANSMIT SHIFT REGISTER conroL ™ @
| B |
N 1 R ;oav;rj
| w clock RX |
| RECOVERY [CONTROL
| |
| I—- |_ |
DATA PIN
I _—:D_. RECEIVE SHIFT REGISTER rEcovERY 1 oot 4J|— RxD
| Y |
PARITY |
: UDR (Recewe}— cHECKER |
] |
UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

UBRR[H:L]

BAUD RATE GENERATOR %

Transmit

| sYNC LOGIC PIN

XCK
h] CONTROL

S T—

When UART

I " 777" Transmitter |

IS ready, the [o1000001] — 1 [eoe]

b ff % : v z—l-.GENERATOR-I-:D‘ — : —
utier ol Dt 01000001 F—— et I

contents are - T [l

copied to

I-D |_ DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY g CONTROL

the shift
register

PARITY
UDR (Recenvet——] CHECKER et —

a
-
o

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRA UCSRB UCSRC

{ ¢

Andrew H. Fagg: Embedded Real- 33
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

|
|
|
|
|
|
|
|
|

Transmit

The least | — ; ____________ - —?—a——|
Significant bit e —— o i
(LSB) of the é D8 0100000 M@ﬂ 4 1]
shift register . |y ————
determines

the state of
the pin

PARITY
UDR (Recenvet——] CHECKER et —

|

|

I—- |_ |

DATA PIN
—:D. RECEIVE SHIFT REGISTER recovEry caNTROL 4J|— RxD

¥ |

|

|

|

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRA UCSRB UCSRC

{ ¢ i

Andrew H. Fagg: Embedded Real- 34
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

|
|
|
|
|
|
|
|
|

Transmit

After a delay, the I — ; ____________ Lee P
UART Shifts UDR (Transmit) __ el i
the values to I |-E oo b o |
the right | —

PARITY
UDR (Recenvet——] CHECKER et —

|

|

I—- |_ |

DATA PIN
—:D. RECEIVE SHIFT REGISTER recovEry caNTROL 4J|— RxD

¥ |

|

|

|

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

X = value doesn’t — —
matter } $ $

Andrew H. Fagg: Embedded Real- 35
Time Systems: Serial Comm

Transmit

Next shift

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

UDR (Transmit)

|
|
|
|
|
|
|
s s fe— o],
|
|

PARITY

GENERATOR

> %x010000 -

DATABUS

a CONTROL

XCK

|

X |
CONTROL | |
|

|

Recewer|
» clock RX |
RECOVERY contRoL |
Lh L_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER 3 coremn: 4J|— RxD
¥ |
PARITY
HAR {Reneke) CHECKER
|
UCSRA UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

36

Transmit

Several shifts
later...

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

DATABUS

a CONTROL

PARITY

GENERATOR

|
|
|
|
|
|
|
-J-| XCK
|

TX

CONTROL

XXXXXX01

________________________ Receiver |
» clock RX |
RECOVERY CONTROL |
I—- |_ |

DATA PIN

—:D. RECEIVE SHIFT REGISTER e ERY caNTROL ..J|— RxD
¥ |
PARITY |
HAR {Fagatics CHECKER |
|
UCSRB UCSRC

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

37

Last Time

 Bit manipulation

» Serial communication
— Asynchronous serial
— Mega8 hardware support

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

38

Today

* More on mega8 serial
» Circuit building in practice
* Project 2

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

39

Administrivia

 Homework 3 Is posted (already).
— Due in one week

* Project 2 out today.
— Due March 29t (but don’t wait!)

— One heli ready now; other units will follow in
the next few days

— Group assignments will be completed tonight:
« Announcement on D2L

Andrew H. Fagg: Embedded Real- 40
Time Systems: Serial Comm

UBRR[H:L]

Y

0sC

Recelve

BAUD RATE GENERATOR

a CONTROL

I

| |

i
* Receive pin | |
I

________ k_____________ﬁﬁﬁﬁﬂ
_— ™ |
P D O UDR (Transmit) CONTROL |
* PARITY |
GEMNERATOR
w PIN |
=2 —I
o REGISTER CONTROL —f TxD
<
=
g Receiver
o CLOC RX

RECOVERY CONTROL

|
________________________ —
|
|
|
|

RxD

I-D DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY g CONTROL

PARITY
UDR (Recenvet——] CHECKER et —

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRB UCSRC

¢ i

Andrew H. Fagg: Embedded Real- 41
Time Systems: Serial Comm

Recelve

* Receive pin
(PDO)

* Receive
shift register

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC BIN

h] CONTROL oK
" Transmitter |
o > |
UDR (Transmit) CONTROL |
* PARITY |
|" GENERATOR
w PIN |
2 ;
2 TRANSMIT SHIFT REGISTER conTRrOL ™ T*0
.:I: -
gV T |
g Receiver |
& CLOCK RX |
RECOVERY CONTROL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER REE AV ERY D 4J|— RxD
¥ |
PARITY |
HAR {Reneke) CHECKER |
|
UCSRB UCSRC
i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

42

Recelve

* “1” on the pin

 Shift register
initially in an
unknown
state

UBRR[H:L]

Y

BAUD RATE GENERATOR

| sYNC LOGIC PIN

DATABUS

§

XCK
h] CONTROL
1 T T T ‘7 T T T T T T T T T T T T Transmitter |
_— ™ |
UDR (Transmit) CONTROL |
* PARITY |
GENERATOR |
| PIN
TRANSMIT SHIFT REGISTER conmol | ™o
B |
———————————————————————— R ;oav;rj
» clock RX |
RECOVERY contRoL |
_ I_ |
. DATA PIN |

FXXXXXXXX R RECOVERY CONTROL [* 1 l
¥ |
PARITY |
HAR {Fagatics CHECKER |
|

UCSRA UCSRB UCSRC

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

43

Recelve

“1”71s
presented to
the shift
register

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

UDR (Transmit)

|
|
|
|
|
|
|
|
|

X

PARITY

| ! GENERATOR

|
|
|
ity | TD
CONTROL -

::D_.B"RANSMIT SHIFT REGISTER

DATABUS

a CONTROL

TX
CONTROL

FXXXXXXXX R

Receiver
i CLOCK RX
RECOVERY CONTROL

Y

UDR (Recenvet——]

PARITY
CHECKER

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

44

UBRR[H:L]

BAUD RATE GENERATOR %

Recelve

|
|
|
|
|
|
I |
Y -J|- XCK
|

“1” is shifted @ = HF——— S sl
Into the most = oy L]
S i g n ifi Ca nt b it g ::D_.B'RANSMIT SHIFT REGISTER _I-. 13 CO;ITT;OL _:T"' TxD
A e
(me) Of the = ™ CLOCK - ::; :
. . RECOVERY CONTROL |
shift register R N et 1|
¥ |
i checker [+ :
|
UCSRA UCSRB UCSRC

{ ¢ i

Andrew H. Fagg: Embedded Real- 45
Time Systems: Serial Comm

Recelve

Next bit is
shifted in

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

UDR (Transmit)

X

|
|
|
|
|
|
|
s s fe— o],
|
|

PARITY

| ! GENERATOR

|

|

|

PIN |
contROL [™

::D_.B"RANSMIT SHIFT REGISTER

DATABUS

P T XXXXXX R

XCK
- CONTROL
Transmitter |
T
CONTROL
TxD

Receiver
i CLOCK RX
RECOVERY CONTROL

Y

UDR (Recenvet——]

PARITY
CHECKER

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

46

Recelve

And the next
bit...

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

X

::D_.B"RANSMIT SHIFT REGISTER

DATABUS

PARITY

| ! GENERATOR

PIM
CONTROL

a CONTROL

XCK

TX
CONTROL

- 011XXXXX]

™ CLOCK
RECOVERY

RX
CONTROL

Y

UDR (Recenvet——]

PARITY
CHECKER

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

47

Recelve

And the 8™ bit

UBRR[H:L]

Y

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

X

::D_.B"RANSMIT SHIFT REGISTER

DATABUS

PARITY

| ! GENERATOR

PIM
CONTROL

a CONTROL

XCK

TX
CONTROL

01101011 |

™ CLOCK
RECOVERY

RX
CONTROL

Y

UDR (Recenvet——]

PARITY
CHECKER

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

UCSRC

3

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

UBRR[H:L]

BAUD RATE GENERATOR %

Recelve

a| CONTROL

|

|

|

|

|

|
| |
[Erecec]s— en L

Y | XCK
|

Completed byte = H——— b

. . : T |
is stored in Lo cofve |
* PARITY |
i _I"GENERATOR |
l | I PIN
the AR a TRANSMIT SHIFT REGISTER R i
<
gV VLI — |
b ff r g Receiver
u e ™ CLOCK R
RECOVERY [*] CONTROL

|

|

|
01101011 | I— RESSEERY ot coslrhrlzm ‘J:_| 0 l

PARITY

|
[01101011 | [e o i

e Sy S — e o e s e, e e, e’ e s e s i, e e e il

Andrew H. Fagg: Embedded Real- 49
Time Systems: Serial Comm

Reading a Byte from the Serial Port

int c;

c=getchar () ;

Andrew H. Fagg: Embedded Real- 50
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

Recelve

|
|
|
|
|
|
|
|
|

 J | CONTROL
getchar() ~ H—— T Ae=r
ransmitier
[]] ; . T, |
retrieves this e Lo]
GENERATOR
byte from the é ::D_.B'RANSMITSHIFT'FEEGSTER—I-. 13 COE;_’:QDL _:f"' D
l—.
>| i1 AR]
b u ffe r = » cock | R:"E"'Ef :
RECOVERY contRoL |
|
_—:D_L: RECEIVE SHIFT REGISTER |— recoutry b cotahaL: ‘J|_| 0 l
¥ |
- 01101011 | crecxer & :
o = |

S S — e o e s e, e e, e’ e s e s i, e e e il

UCSRA UCSRB UCSRC

{ ¢ i

Andrew H. Fagg: Embedded Real- 51
Time Systems: Serial Comm

Reading a Byte from the Serial Port

int c;
c=getchar () ;

Note: getchar() “blocks” until a byte is
available

* Will only return with a value once one is
avalilable to be returned

Andrew H. Fagg: Embedded Real- 52
Time Systems: Serial Comm

Processing Serial Input

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();

<do something with the character>

}

<do something else while waiting>

J

kbhit() tells us whether a byte is ready to be read

Andrew H. Fagg: Embedded Real- 53
Time Systems: Serial Comm

Mega8 UART C Interface

printf () : formatted output
scanf () : formatted input

See the LibC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Serial I/0O by Polling

int c;
while (1) {
1f (kbhit ()) {

// A character is available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

Andrew H. Fagg: Embedded Real- 95
Time Systems: Serial Comm

