Today

* Midterm discussion
* Project 2 discussion

* New components of the mega8:
— Timer/counters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Midterm Exam

« Mean score: 84.4
 Median: 86
e Standard deviation: 8.5

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

Suppose that we want produce a pulse on a
digital line that was exactly 500 ms in
length?

 What would the code look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms (500);
PORTB = PORTB & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms (500);
PORTB = PORTB & ~1;

This will work, but why is it undesirable?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

This will work, but why is it undesirable?

delay_ms () is implemented by using a
for() loop

* The microcontroller can’'t do anything else
while it is looping

» Have to loop a precise number of times
(not always easy to do)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events: Another Example

Suppose we would want to measure the
width of a pulse. How would we
implement this?

Andrew H. Fagg: Embedded Real- 8
Time Systems: Timers/Counters

Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while (PINB & Ox1 == 0){};

// Now count until it goes low
for (counter = 0; PINB & 0x1; ++counter)

{
delay_ms (1) ;
}
// Now: counter is the width of
// of the pulse in ms

Andrew H. Fagg: Embedded Real- 9
Time Systems: Timers/Counters

Timing of Events: Another Example

Again: the program cannot be doing
anything else while it is waiting

Andrew H. Fagg: Embedded Real- 10
Time Systems: Timers/Counters

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices in hardware.

These can:

* Be used to count the number of events
that have occurred (either external or
internal)

 Act as a clock

Andrew H. Fagg: Embedded Real- 11
Time Systems: Timers/Counters

Timer O

» Possible input sources:
— Pin TO (PD4)
— System clock
 Potentially divided by a “prescaler”
» 8-bit counter

* When the counter turns over from OxFF to
0x0, an interrupt (an event) can be
generated (more on this next time)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

12

Timer O Implementation

clk,o [o 10-BIT T/C PRESCALER
PSR10

I

O

CKiM024

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10
(counting from 1)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

13

Timer O Implementation

clk,q [> 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

 Clock input to Y0-bit counter
* Qutput bits: 3, 6, 8, and 10
(counting from 1)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

14

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 3 B 3
S S <
O % T
PSR10 | o

» Clock input to 10-bit counter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

15

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear
3 3 B 3
S S <
O % T
PSR10 | o

» Clock input to 10-bit nter
* Qutput bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

16

Timer O Implementation

clk,q [> 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

» Clock input to 10-bit counter
» Qutput bits: 3, 6, 8, and 10

— These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

17

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

L 4

To !} . 4
ization |}

MUX selects between 5 t++ vy i l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 18
Time Systems: Timers/Counters

Timer O Implementation

1o . 4 L > Cloar 10-BIT T/C PRESCALER

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

t &
MUX selects between ITTETY i l
these different inputs __w
 Control bits determine I
S O u r C e TIMER!GOUNTEI:::{:LDGK SOURCE
Andrew H. Fagg: Embedded Real- 19

Time Systems: Timers/Counters

Timer O Implementation

clk,q & W e 10-BIT T/C PRESCALER
BIELR
& ! |
i -sakad ! S l
MUX selects between Yyvyy i

Cs00

these different inputs csor
* 000: No input

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 20
Time Systems: Timers/Counters

Timer O Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

MUX selects between TEETY i l
these different inputs 233?3\»\

* 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 21
Time Systems: Timers/Counters

Timer O Implementation

Y
w
4
=
—»
R
CK/8

MUX selects between
these different inputs

* 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 22
Time Systems: Timers/Counters

Timer O Implementation

MUX selects between
these different inputs o1

cs02

* 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 23
Time Systems: Timers/Counters

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

PSR10

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these _ l
different inputs cons /

° 1 10 Falllng edge Of pln TO TIMER/COUNTERD CLOCK SOURCE
Andrew H. Fagg: Embedded Real- 24

Time Systems: Timers/Counters

Timer O Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

MUX selects between these
different inputs —
* 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 25
Time Systems: Timers/Counters

DATA BUS

Timer O

« TCNTO: 8-bit

TCCRr counter (a register)

¢ « TCCRO: control

Control Logic -.‘EE. reg |Ster

y

Timer/Counter

TCNTR

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

26

DATA BUS

Timer O

 Clock source from

TCCRn preViOUS slide

J,

Control Logic ck,,

A
Y
Timer/Counter
TCNTn
= OxFF

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

27

DATA BUS

Timer O

 |ncrement counter
on every low-to-high
transition

Timer/Counter
TCNTn

Andrew H. Fagg: Embedded Real- 28
Time Systems: Timers/Counters

Timer 0 Example

Suppose:
« 16MHz clock
 Prescaler of 1024

« We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

29

delay =

Timer 0 Example

1024*156

16,000,000

=9948 us =10 ms

Andrew H. Fagg: Embedded Real- 30
Time Systems: Timers/Counters

Timer 0 Code Example
timer0_config(TIMERO_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the timer to O

<Do something else for a while>
while(timerO_read() < 156) {
<Do something while waiting>

b
// Break out of while loop at ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)

Andrew H. Fagg: Embedded Real- 31
Time Systems: Timers/Counters

Timer 0 Example

Advantage over delay _ms():
» Can do other things while waiting

* Timing is much more precise

— We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

32

Timer 0 Example

One caution:

» “something else” cannot take very much
time

(we have a solution for this — coming soon!)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

33

Next Example

How do we time a delay of 100 usecs?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

34

Next Example

How do we time a delay of 100 usecs?

clock _ticks* prescale =.0001* clock _ freq
=.0001*16000000

=1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

35

Next Example

How do we time a delay of 100 usecs?

clock _ticks*™* prescale =.0001* clock _ freq

=.0001*16000000
=1600
200 * 8 =1600
OR
25 * 64 =1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

36

Example: Timing a Pulse Width

timer0_config(TIMERO_PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high
while(PINB & 0x1 == 0){};
timer0_set(0); // Set the timer to O

while((PINB & 0x1) !=0) {
<Do something while waiting>

b

pulse_width = read_timer0();

Andrew H. Fagg: Embedded Real- 37
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What is the “resolution” of pulse width?

Andrew H. Fagg: Embedded Real- 38
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What is the “resolution” of pulse width?
» Each “tick”of pulse_width is:
1024

delay = = 64
Y = 16.000000 0

Andrew H. Fagg: Embedded Real- 39
Time Systems: Timers/Counters

Example: Timing a Pulse Width

So, with pulse_width ticks:

1024 * pulse _ width
16,000,000

delay = =64 * pulse _ width us

Andrew H. Fagg: Embedded Real- 40
Time Systems: Timers/Counters

Example: Timing a Pulse Width

timer0_config(TIMERO_PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high
while(PINB & 0x1 == 0){};
timer0_set(0); // Set the timer to O

Note: the longer
“something”
takes, the larger

while((PINB & 0x1) I= 0) { the error in
<Do something while waiting> timing

b

pulse_width = read_timer0();

Andrew H. Fagg: Embedded Real- 41
Time Systems: Timers/Counters

Other Note

See oulib.h for the list of possible prescalers
for timer O

Andrew H. Fagg: Embedded Real- 42
Time Systems: Timers/Counters

Two Other Timers

Timer 1:
* 16 bit counter
 Prescalers: 1, 8, 64, 256, 1024

Timer 2:
e 8 bit counter
 Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

43

(diversion to interrupts)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

44

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

45

Timer 0 Code Example
timer0_config(TIMERO_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the timer to O

<Do something else for a while>
while(timerO_read() < 156) {
<Do something while waiting>

b
// Break out of while loop at ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)

Andrew H. Fagg: Embedded Real- 46
Time Systems: Timers/Counters

Timer 0 Example

Advantage over delay _ms():
» Can do other things while waiting

* Timing is much more precise

— We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

47

Timer 0 Example

One caution:

» “something else” cannot take very much
time

What is the solution?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

48

Timer O Interrupt

What is the solution?
» Use interrupts!

* We can configure the timer to generate an
interrupt every time the timer’s counter
rolls over from OxFF to 0x00

Andrew H. Fagg: Embedded Real- 49
Time Systems: Timers/Counters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

50

Timer O Interrupt

* We can configure the timer to generate an
interrupt every time the timer’s counter
rolls over from OxFF to 0x00

Andrew H. Fagg: Embedded Real- 51
Time Systems: Timers/Counters

Timer O Interrupt Example

Suppose:
« 16MHz clock
 Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

52

Timer 0 Example |l

K
interval = 10247256 =16.384 ms

16,000,000

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

53

Timer O
Interrupt Service Routine (ISR)

An ISR is a type of function that is called
when the interrupt is generated

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

54

Timer O
Interrupt Service Routine (ISR)

ISR(TIMERO_OVF_vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

¥

What is the flash frequency?

frequency = 16,000,000 _ 30.5176 Hz

1024 *256%*2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

55

Example I:
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024);

// Enable the timer interrupt
timerQ_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

56

Timer 0 with Interrupts

This solution is particularly nice:

* “something else” does not have to worry
about timing at all

» PBO state is altered asynchronously from
what is happening in the main program

Andrew H. Fagg: Embedded Real- 57
Time Systems: Timers/Counters

Next Example: Timer 0 Example |l

K
interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

58

Timer 0 Example |l

How many counts do we need so that we
toggle the state of PBO every second?

COUNLS = 1000 ms =61.0352

16.384 ms

We will assume 61 Is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

Example ll: Interrupt Service
Routine (ISR)

ISR(TIMERO_OVF _vect) {
++counter;
if(counter == 61) {
// Toggle output state every 61st interrupt:
/I This means: on for ~1 second and then off for ~1 sec
PORTB "= 1;
counter = 0;
b
J

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

60

Example Il: Initialization
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO _PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else
b

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

61

Timer 0 Example |l

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

62

Timer 0 Example |l

What is the flash frequency?

frequency = 16,000,000 =~ (0.5 Hz
1024*256*61*2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

63

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

* Prescalar (1 ... 1024)
« Timer0 (256)
» Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real- 64
Time Systems: Timers/Counters

Two Other Timers

Timer 1:
* 16 bit counter

imer 2:
e 8 bit counter

See oulib.h for configuration parameters

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

65

Last Time

 Counter/timers

* Interrupts

— Mechanism to stop the processor from
executing the current program to address
some event

— Events can be external or internal

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

66

Today

« Some more interrupt examples
— Volatile variables
— Pulse width modulation
— Serial buffering

* Project 3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

67

Interrupt Service Routines

« Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
— No “printf()”

« Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

68

Interrupts, Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code in order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

69

Shared Data and Compiler
Optimizations

For example:
A=A + 1;
C =B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

70

Shared Data and Compiler
Optimizations

Now consider:

while (1) {
PORTB = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

71

Shared Data and Compiler
Optimizations
The compiler will assume that ‘A" never changes.
This will result in code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1) {
PORTB = R1;

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 72
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

ISR (TIMERO_OVF_vect) {
A = PIND;
J

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

73

Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR (TIMERO_OVF_vect) {
A = PIND;
}
» The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 74
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location is not changing

* This is accomplished when we declare the
global variable:

volatile uint8 t A;

Andrew H. Fagg: Embedded Real- 75
Time Systems: Timers/Counters

Information Encoding

Many different options for encoding
Information for transmission to/from other

devices:
« Parallel digital (e.g., for our Project 1)
 Serial digital (e.g., USB, RS232)
* Analog: use voltage to encode a value

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

76

Information Encoding

An alternative: pulse-width modulation
(PWM)

 Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real- 77
Time Systems: Timers/Counters

PWM Example:

RC Servo Motors

« 3 pins: power (red),
ground (black), and
command signal (white)

 Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real- 78
Time Systems: Timers/Counters

PWM Example

20 ms
- >~

- > >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

* 0.5 ms: 0 degrees

1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real- 79
Time Systems: Timers/Counters

RC Servo Motors

* |Internal potentiometer measures the
current orientation of the shaft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines

shaft velocity.
« Mechanical stops limit the range of motion

— These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded Real- 80
Time Systems: Timers/Counters

PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

81

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

* They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 82
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 83
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

« Again: they are linearly related (essentially)

* If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 84
Time Systems: Timers/Counters

Controlling LED Brightness

We need:
» To produce a periodic behavior, and

* A way to specity the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 85
Time Systems: Timers/Counters

Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter
 \When the counter is 0, turn the LED on

« When the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded Real- 86
Time Systems: Timers/Counters

volatile uint8 t counter = 0;

14
volatile uint8 _t duration = 0;

’

ISR (TIMERO_OVF_vect)
{

++counter;

if (counter >= duration)
PORTB &= ~1;

else 1f (counter == 0)
PORTB |= 1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

87

Initialization Detalls

« Set up timer
* Enable interrupts

» Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

89

Initialization

int main(void) {
DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

90

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

91

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timer0 counter (8 bits) expires every 256
clock cycles

__ 256 _, 6 s
16000000
(assuming a 16MHz clock)

Time Systems: Timers/Counters

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

93

PWM Implementation

What is the period of the pulse?

» The 8-bit counter (of the interrupt) expires every
256 Interrupts

K
t = 2967256 =4.096 ms
16000000
Andrew H. Fagg: Embedded Real- 94

Time Systems: Timers/Counters

Doing “Something Else”

unsigned 1nt 1;

while (1) |
for(i = 0; 1 < 256; ++1)
duration = 1;

delay_ms (50) ;
} i
} i

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

divert back to serial interrupt example...

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

96

