
Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

1

Last Time

Project 2 discussion
• Circuits
• Low-level functions

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

2

Today

Timing:
• Generating precisely-timed outputs
• Measuring the time that an event occurs

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

3

Timing of Events

Suppose that we want produce a pulse on a
digital line that was exactly 500 ms in
length?

• What would the code look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

4

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

5

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;

This will work, but why is it undesirable?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

6

Timing of Events

This will work, but why is it undesirable?

delay_ms() is implemented by using a
for() loop

• The microcontroller can’t do anything else
while it is looping

• Have to loop a precise number of times
(not always easy to do)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

7

Timing of Events: Another Example

Suppose we would want to measure the
width of a pulse. How would we
implement this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

8

Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while(PINB & 0x1 == 0){};

// Now count until it goes low
for(counter = 0; PINB & 0x1; ++counter)
{
delay_ms(1);

}
// Now: counter is the width of
// of the pulse in ms

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

9

Timing of Events: Another Example

Again: the program cannot be doing
anything else while it is waiting

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

10

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices in hardware.

These can:
• Be used to count the number of events

that have occurred (either external or
internal)

• Act as a clock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

11

Timer 0

• Possible input sources:
– Pin T0 (PD4)
– System clock

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to

0x0, an interrupt (an event) can be
generated (more on this next time)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

12

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

(counting from 1)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

13

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

(counting from 1)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

14

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

15

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

16

Timer 0 Implementation

• Clock input to 10-bit counter
• Output bits: 3, 6, 8, and 10

– These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

17

Timer 0 Implementation

MUX selects between
these different inputs

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

18

Timer 0 Implementation

MUX selects between
these different inputs

• Control bits determine
source

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

19

Timer 0 Implementation

MUX selects between
these different inputs

• 000: No input

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

20

Timer 0 Implementation

MUX selects between
these different inputs

• 001: System clock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

21

Timer 0 Implementation

MUX selects between
these different inputs

• 010: System clock div 8

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

22

Timer 0 Implementation

MUX selects between
these different inputs

• 011: System clock div 64

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

23

Timer 0 Implementation

MUX selects between these
different inputs

• 110: Falling edge of pin T0

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

24

Timer 0 Implementation

MUX selects between these
different inputs

• 111: Rising edge of pin T0

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

25

Timer 0

• TCNT0: 8-bit
counter (a register)

• TCCR0: control
register

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

26

Timer 0

• Clock source from
previous slide

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

27

Timer 0

• Increment counter
on every low-to-high
transition

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

28

Timer 0 Example

Suppose:
• 16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to

156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

29

Timer 0 Example

mssdelay 109948
000,000,16
156*1024

≈== μ

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

30

Timer 0 Code Example
timer0_config(TIMER0_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the timer to 0

<Do something else for a while>
while(timer0_read() < 156) {

<Do something while waiting>
};

// Break out of while loop after ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

31

Timer 0 Example

Advantage over delay_ms():
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

32

Timer 0 Example

One caution:
• “something else” cannot take very much

time

(we have a solution for this – coming soon!)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

33

Next Example

How do we time a delay of 100 usecs?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

34

Next Example

How do we time a delay of 100 usecs?

1600
16000000*0001.

*0001.*

=
=
= freqclockprescaleticksclock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

35

Next Example

How do we time a delay of 100 usecs?

160064*25

16008*200
1600

16000000*0001.
*0001.*

=

=
=
=
=

OR

freqclockprescaleticksclock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

36

Timer 0 Code Example
timer0_config(TIMER0_PRE_8); // Init: Prescale by 1024

timer0_set(0); // Set the timer to 0

<Do something else for a while>
while(timer0_read() < 200) {

<Do something while waiting>
};

// Break out of while loop after ~100 us

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

37

Example 3:
Timing the Width of a Pulse

• Input: port B, pin 1
• How long is the pin high?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

38

Example: Timing a Pulse Width
timer0_config(TIMER0_PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high
while(PINB & 0x1 == 0){};
timer0_set(0); // Set the timer to 0

while((PINB & 0x1) != 0) {
<Do something while waiting>

};
pulse_width = read_timer0();

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

39

Example: Timing a Pulse Width

What is the “resolution” of pulse_width?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

40

Example: Timing a Pulse Width

What is the “resolution” of pulse_width?
• Each “tick”of pulse_width is:

sdelay μ64
000,000,16

1024
==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

41

Example: Timing a Pulse Width

So, with pulse_width ticks:

swidthpulsewidthpulsedelay μ_*64
000,000,16
_*1024

==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

42

Example: Timing a Pulse Width
timer0_config(TIMER0_PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high
while(PINB & 0x1 == 0){};
timer0_set(0); // Set the timer to 0

while((PINB & 0x1) != 0) {
<Do something while waiting>

};
pulse_width = read_timer0();

Note: the longer
“something”
takes, the larger
the error in
timing

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

43

Other Note

See oulib.h for the list of possible prescalers
for timer 0

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

44

Two Other Timers

Timer 1:
• 16 bit counter
• Prescalers: 1, 8, 64, 256, 1024

Timer 2:
• 8 bit counter
• Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

45

Last Time

Counter/Timers
• Counting events: external events or clock

ticks
• Prescalar divides the clock frequency

(implemented as yet another counter)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

46

Today

• Input/Output by Polling
• Interrupts

– Processor is interrupted from what it is doing
to perform some other task

– Once done with the task, returns to what it
was previously doing

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

47

Administrivia

• HW 3 due in class on Tuesday
• Midterm in 1 week
• Project 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

48

I/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {
x = PINB & 0x10;

}while(x == 0);
y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

49

I/O By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

50

I/O By Polling

What is wrong with this approach?
• In embedded systems, we are typically

managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

51

I/O By Polling

• We can potentially be waiting for a long
time before the state changes
– We call this busy waiting

• The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

52

I/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {
x = PINB & 0x10;
<go do something else>

}while(x == 0);
y = PINC …

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

53

I/O By Polling: An Alternative

Polling works great … but:
• We have to guarantee that our “something

else” does not take too long (otherwise,
we may miss the event)

• Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

54

I/O by Polling

In practice, we typically reserve this polling
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are typically measured in nano- to
micro- seconds)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

55

An Alternative: Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes an interrupt
handler (a small piece of code)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

56

Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

57

Last Time

Interrupts
• Temporarily stopping the main program to

handle a time-critical event
• The interrupt handler is a small piece of

code (we try to make it as short as
possible)

• Once the interrupt handler is done,
execution continues with the main
program as if nothing had happened

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

58

Today

• Generating regular interrupts
• Interrupts to produce PWM signals
• Interrupts in practice

Project 2 due on Thursday at the close of
the lab

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

Interrupt Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

60

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

61

An Example
Suppose we are executing the

“something else” code:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

62

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

63

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

64

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

65

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

66

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

67

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

68

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

69

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

70

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

71

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

72

Interrupt Routines
Generally a very small number of

instructions
• We want a quick response so the

processor can return to what it was
originally doing

• No delays, waits, or floating point
operations …

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

73

Back to our timer 0 example…

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

74

Timer 0 Code Example
timer0_config(TIMER0_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the timer to 0

<Do something else for a while>
while(timer0_read() < 156) {

<Do something while waiting>
};

// Break out of while loop at ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

75

Timer 0 Example

Advantage over delay_ms():
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

76

Timer 0 Example

One caution:
• “something else” cannot take very much

time

What is the solution?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

77

Timer 0 Interrupt

What is the solution?
• Use interrupts!
• We can configure the timer to generate an

interrupt every time that the timer’s
counter rolls over from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

78

Timer 0 Interrupt Example

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

79

Timer 0 Example II

msinterval 384.16
000,000,16
256*1024

==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

80

Timer 0
Interrupt Service Routine (ISR)

An ISR is a type of function that is called
when the interrupt is generated

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

81

Timer 0
Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30
2*256*1024

000,000,16
==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

82

Example I:
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

83

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
• PB0 state is altered asynchronously from

what is happening in the main program

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

84

Next Example: Timer 0 Example II

msinterval 384.16
000,000,16
256*1024

==

How many counts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

85

Timer 0 Example II

0352.61
384.16

1000
==

ms
mscounts

How many counts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

86

Example II: Interrupt Service
Routine (ISR)

ISR(TIMER0_OVF_vect) {
static uint8_t counter;
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

87

Example II: Initialization
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

88

Timer 0 Example II

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

89

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0
2*61*256*1024

000,000,16
≈=

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

90

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

• Prescalar (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

91

Information Encoding

Many different options for encoding
information for transmission to/from other
devices:

• Parallel digital (e.g., for our Project 1)
• Serial digital (Project 2)
• Analog: use voltage to encode a value

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

92

Information Encoding

An alternative: pulse-width modulation
(PWM)

• Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

93

PWM Example:

RC Servo Motors
• 3 pins: power (red),

ground (black), and
command signal (white)

• Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

94

PWM Example

Internal circuit translates pulse width into a goal
position:

• 0.5 ms: 0 degrees
• 1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

95

RC Servo Motors

• Internal potentiometer measures the
current orientation of the shaft

• Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

96

PWM Example II:
Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

97

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

98

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

99

Controlling LED Brightness
Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

100

Controlling LED Brightness

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

101

Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

counter
• When the counter is 0, turn the LED on
• When the counter reaches some

“duration”, turn the LED off

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

102

volatile uint8_t counter = 0;
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

103

volatile uint8_t counter = 0;
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{
++counter;
if(counter >= duration)

PORTB &= ~1;

else if(counter == 0)
PORTB |= 1;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

104

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

105

Initialization
int main(void) {

DDRB = 0xFF;
PORTB = 0;

// Initialize counter
counter = 0;
duration = 0;

// Interrupt configuration
timer0_config(TIMER0_NOPRE); // No prescaler
// Enable the timer interrupt
timer0_enable();
// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

106

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

107

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

st μ16
16000000

256
==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

108

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

109

PWM Implementation

What is the period of the pulse?
• The 8-bit counter (of the interrupt) expires every

256 interrupts

mst 096.4
16000000

256*256
==

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

110

Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i)
duration = i;
delay_ms(50);

};
};

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

111

Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short

also
– Minimize looping
– No “printf()”

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

112

Interrupts, Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

113

Shared Data and Compiler
Optimizations

For example:
A = A + 1;
C = B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

114

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

115

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

116

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

117

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

118

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

119

to serial interrupt example…

