Last Time

Project 2 discussion
e Circuits
* Low-level functions

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Today

Timing:
e Generating precisely-timed outputs
 Measuring the time that an event occurs

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

Suppose that we want produce a pulse on a
digital line that was exactly 500 ms in
length?

 \What would the code look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume 1t 1s pin O of port B

PORTB = PORTB | 1;
delay ms(500);
PORTB = PORTB & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

// Assume 1t 1s pin O of port B

PORTB = PORTB | 1;
delay ms(500);
PORTB = PORTB & ~1;

This will work, but why Is it undesirable?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events

This will work, but why Is it undesirable?

delay ms() is implemented by using a
for() loop

 The microcontroller can’'t do anything else
while It is looping

 Have to loop a precise number of times
(not always easy to do)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

Timing of Events: Another Example

Suppose we would want to measure the
width of a pulse. How would we
iImplement this?

Andrew H. Fagg: Embedded Real- 7
Time Systems: Timers/Counters

Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while(PINB & Ox1 == 0){};

// Now count until 1t goes low
for(counter = 0; PINB & Ox1; ++counter)

{
delay ms(1l);

ks
// Now: counter 1s the width of
// of the pulse In ms

Andrew H. Fagg: Embedded Real- 8
Time Systems: Timers/Counters

Timing of Events: Another Example

Again: the program cannot be doing
anything else while it is waliting

Andrew H. Fagg: Embedded Real- 9
Time Systems: Timers/Counters

Counter/Timers In the Mega8

The mega8 incorporates three counter/timer
devices in hardware.

These can:

 Be used to count the number of events
that have occurred (either external or
internal)

e Act as a clock

Andrew H. Fagg: Embedded Real- 10
Time Systems: Timers/Counters

Timer O

e Possible input sources:
— Pin TO (PD4)
— System clock
 Potentially divided by a “prescaler”

e 8-bit counter

* \When the counter turns over from OxFF to
0x0, an interrupt (an event) can be
generated (more on this next time)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

11

Timer 0 Implementation

clk,o [D 10-BIT T/C PRESCALER
PSR10

I

O

CKiM024

e Clock input to 10-bit counter
e Output bits: 3, 6, 8, and 10
(counting from 1)

Andrew H. Fagg: Embedded Real- 12
Time Systems: Timers/Counters

Timer 0 Implementation

clk,q [> 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

e Clock input to X0-bit counter
e Output bits: 3, 6, 8, and 10
(counting from 1)

Andrew H. Fagg: Embedded Real- 13
Time Systems: Timers/Counters

Timer 0 Implementation

clk,q > o 10-BIT T/C PRESCALER
I o e o
PSR10 | o
e Clock input to 10-bit counter
e Output bits: 3, 6, 8, and 10
Andrew H. Fagg: Embedded Real- 14

Time Systems: Timers/Counters

Timer 0 Implementation

clk,q > o 10-BIT T/C PRESCALER
PSR10 | = o
e Clock input to 10-bit celinter
e Output bits: 3, 6, 8, and 10
Andrew H. Fagg: Embedded Real- 15

Time Systems: Timers/Counters

Timer 0 Implementation

clk,q [> 10-BIT T/C PRESCALER
Clear
PSR10

N

O

CKiM024

e Clock input to 10-bit counter
e Output bits: 3, 6, 8, and 10

— These serve to divide the clock by the
specified number of counts

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

16

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

. 4
TO T TTTTTTTTTTTTA : L
ization |}

MUX selects between ____p t+vyse | l

Cs00

these different inputs -

!

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 17
Time Systems: Timers/Counters

Timer 0 Implementation

1o . 4 L > Cloar 10-BIT T/C PRESCALER

n)
w
5
]
—5
CKi8
CK/B4
CK/256
CKM024

t &
MUX selects between TTETY i l
these different inputs _y
» Control bits determine]
S O u r C e TIMERJGOUNTE?::{:}LDGK SOURCE
Andrew H. Fagg: Embedded Real- 18

Time Systems: Timers/Counters

Timer 0 Implementation

clk,q & W e 10-BIT T/C PRESCALER
BIEREER
& ! |
i -sakad ! S l
MUX selects between YYvvy l

Cs00

these different inputs csot
e 000: No Input

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 19
Time Systems: Timers/Counters

Timer 0 Implementation

clk,q > 10-BIT T/C PRESCALER
Clear

CKiM024

PSR10

MUX selects between Pliveid l
these different inputs 223?3\»\

e 001: System clock

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 20
Time Systems: Timers/Counters

Timer 0 Implementation

Y
w
4
=
o b
CK/8

MUX selects between
these different inputs

e 010: System clock div 8

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 21
Time Systems: Timers/Counters

Timer 0 Implementation

MUX selects between
these different inputs csot

cs02

e 011: System clock div 64

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 22
Time Systems: Timers/Counters

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these) l
different inputs = /

e 110: Falling edge of pin TO I A
Andrew H. Fagg: Embedded Real- 23

Time Systems: Timers/Counters

Timer 0 Implementation

clk,q & > 10-BIT T/C PRESCALER
Clear

PSR10

—5
CKi8

CK/B4
CK/256
CKM024

MUX selects between these
different inputs sl

e 111: Rising edge of pin TO

TIMER/COUNTERRD CLOCK SOURGCE
clk.m

Andrew H. Fagg: Embedded Real- 24
Time Systems: Timers/Counters

Timer O

« TCNTO: 8-hit
TCGRY counter (a register)
¢ TCCRO: control

)] Control Logic clk -
- . reg ISter
o
< A
|_
5
y
Timer/Counter
TCNTn
= OxFF
Andrew H. Fagg: Embedded Real- 25

Time Systems: Timers/Counters

DATA BUS

Timer O

e Clock source from

TCCRn previous slide

J,

Control Logic ok,

A
Y
Timer/Counter
TCNTn
= OxFF

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

26

DATA BUS

Timer O

e Increment counter
on every low-to-high
transition

Timer/Counter
TCNTn

Andrew H. Fagg: Embedded Real- 27
Time Systems: Timers/Counters

Timer 0 Example

Suppose:
e 16MHz clock
e Prescaler of 1024

e \We walit for the timer to count from 0 to
156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

28

delay =

Timer 0 Example

1024156

=9948 15 =10 ms
16,000,000

Andrew H. Fagg: Embedded Real- 29
Time Systems: Timers/Counters

Timer 0 Code Example
timerO_config(TIMERO _PRE_1024); // Init: Prescale by 1024

timerO_set(0); // Set the timerto O

<Do something else for a while>
while(timerO_read() < 156) {
<Do something while waiting>

I3
// Break out of while loop after ~10 ms

See Atmel HOWTO for example code (timer_demo?2.c)

Andrew H. Fagg: Embedded Real- 30
Time Systems: Timers/Counters

Timer 0 Example

Advantage over delay ms():
e Can do other things while waiting

e Timing Is much more precise

— We no longer rely on a specific number of
Instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

31

Timer 0 Example

One caution:

* “something else” cannot take very much
time

(we have a solution for this — coming soon!)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

32

Next Example

How do we time a delay of 100 usecs?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

33

Next Example

How do we time a delay of 100 usecs?

clock _ticks™ prescale =.0001*clock freq
=.0001*16000000
=1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

34

Next Example

How do we time a delay of 100 usecs?

clock _ticks™ prescale =.0001*clock _ freq
=.0001*16000000
=1600
200 * 8 =1600
OR
25 * 64 =1600

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

35

Timer 0 Code Example
timerO_config(TIMERO_PRE_8); // Init: Prescale by 1024

timerO_set(0); // Set the timerto O

<Do something else for a while>
while(timerO_read() < 200) {
<Do something while waiting>

%

// Break out of while loop after ~100 us

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

36

Example 3.
Timing the Width of a Pulse
e Input: port B, pin 1
 How long is the pin high?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

37

Example: Timing a Pulse Width

timerO_config(TIMERO _PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high
while(PINB & 0x1 == 0){};
timerO_set(0); /[Set the timer to O

while((PINB & 0x1) !=0) {
<Do something while waiting>

%

pulse_width = read_timer0();

Andrew H. Fagg: Embedded Real- 38
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What is the “resolution” of pulse width?

Andrew H. Fagg: Embedded Real- 39
Time Systems: Timers/Counters

Example: Timing a Pulse Width

What is the “resolution” of pulse width?
e Each “tick’of pulse width Is:
1024

delay = =64
y 16,000,000 -

Andrew H. Fagg: Embedded Real- 40
Time Systems: Timers/Counters

Example: Timing a Pulse Width

So, with pulse_width ticks:

1024* pulse _width

delay =
16,000,000

=64* pulse _width /s

Andrew H. Fagg: Embedded Real- 41
Time Systems: Timers/Counters

Example: Timing a Pulse Width

timerO_config(TIMERO _PRE_1024); // Init: Prescale by 1024

// Wait for pin to go high

while(PINB & 0x1 == 0){}; Note: the longer

timerO_set(0); /[Set the timerto O someth ng
takes, the larger
while((PINB & 0x1) I= 0) { the error in
<Do something while waiting> timing
;
pulse_width = read_timer0();
Andrew H. Fagg: Embedded Real- 42

Time Systems: Timers/Counters

Other Note

See oulib.h for the list of possible prescalers
for timer O

Andrew H. Fagg: Embedded Real- 43
Time Systems: Timers/Counters

Two Other Timers

Timer 1:
e 16 bit counter
e Prescalers: 1, 8, 64, 256, 1024

imer 2:
e 8 bit counter
e Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

44

Last Time

Counter/Timers

e Counting events: external events or clock
ticks

* Prescalar divides the clock frequency
(implemented as yet another counter)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

45

Today

 Input/Output by Polling

e |nterrupts

— Processor is interrupted from what it is doing
to perform some other task

— Once done with the task, returns to what it
was previously doing

Andrew H. Fagg: Embedded Real- 46
Time Systems: Timers/Counters

Administrivia

« HW 3 due In class on Tuesday
 Midterm in 1 week
* Project 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

47

/O By Polling

One possible approach: the processor
continually checks the state of the device:

do {

X = PINB & 0x10;
while(x == 0);
y = PINC ..

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

48

/O By Polling

What is wrong with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

49

/O By Polling

What is wrong with this approach?

* In embedded systems, we are typically
managing many devices at once

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

50

/O By Polling

* \WWe can potentially be waiting for a long
time before the state changes

— We call this busy waiting

 The processor is wasting time that could
be used to do other tasks

What is one way to solve this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

51

/O By Polling: An Alternative

Alternative: do something while we are
waiting

do {

X = PINB & 0x10;

<go do something else>
while(x == 0);
y = PINC ..

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

52

/O By Polling: An Alternative

Polling works great ... but:

* \We have to guarantee that our “something
else” does not take too long (otherwise,
we may miss the event)

* Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 53
Time Systems: Timers/Counters

/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* \We know the event is coming very soon
 \We must respond to the event very quickly

(both are typically measured in nano- to
micro- seconds)

Andrew H. Fagg: Embedded Real- 54
Time Systems: Timers/Counters

An Alternative: Interrupts

e Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

 The processor then executes an interrupt
handler (a small piece of code)

* Execution then continues with the original
program

Andrew H. Fagg: Embedded Real- 55
Time Systems: Timers/Counters

Some Sources of Interrupts
(Mega8)

External:
* An Input pin changes state
« The UART recelives a byte on a serial input

Internal:
e A clock
e Processor reset

 The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

56

Last Time

Interrupts

e Temporarily stopping the main program to
handle a time-critical event

 The interrupt handler is a small piece of
code (we try to make it as short as
possible)

* Once the interrupt handler is done,
execution continues with the main
program as Iif nothing had happened

Andrew H. Fagg: Embedded Real- 57
Time Systems: Timers/Counters

Today

o Generating regular interrupts
* Interrupts to produce PWM signals
 Interrupts in practice

Project 2 due on Thursday at the close of
the lab

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

58

Interrupt Example

Suppose we are executing the
“something else” code:

LDS R1 (A)<— PC
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)<«— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

60

An Example

Suppose we are executing the
“something else” code:

LDS R1 (A)
LDS R2 (B)
CP R2, R1 < PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

61

An Example

An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 sewt Fagy: Embedsed real

Time Systems: Timers/Counters

62

An Example

Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

» BRGE 3\

LDS R3 (D) remember this location

ADD R3, R1
STS (D)1 R3 Andrew H. Fagg: Embedded Real-

Time Systems: Timers/Counters

63

An Example

Execute the interrupt handler
EXT INTI1:

LDS R1 (A
A PC—>LDS R1 (G)

LDS R2 (V
CPR2 R LDS R5 (L)

» BRGE 3 “_ ADDR1, R2
LDS R3 (D) '
ADD R3. R1 RETI

STS (D)1 RS Andrew H. Fagg: Embedded Real- 64

Time Systems: Timers/Counters

An Example

Execute the interrupt handler

EXT INT1:
LDS R1 (A)

LDS R2 (B) LDS R1(G)
CPR2 RI PC —»LDS R5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RET]

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 65

Time Systems: Timers/Counters

An Example

Execute the interrupt handler

EXT INT1:
LDS R1 (A)

LDS R2 (B) LDS R1(G)
CP R2, R1 LDSR5 (L)
> ERGE 3 PC —»ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RET]

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 66

Time Systems: Timers/Counters

An Example

Execute the interrupt handler

EXT INT1:
LDS R1 (A)

LDS R2 (B) LDS R1(G)
CP R2, R1 LDSR5 (L)
> BRGE 3 . _ ADDRIR2
LDS R3 (D) '
ADD R3, R1 RET]

STS (D)1 RS Andrew H. Fagg: Embedded Real- 67

Time Systems: Timers/Counters

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

LDS R2 (B) LDS R1(G)
CP R2, R1 LDSR5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RET

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 68

Time Systems: Timers/Counters

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 «— PC
DS R3 (D)\ :
ADD R3, R1 RET
STS (D), R3 sewt Fage Embodded real o5

Time Systems: Timers/Counters

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)

LDS R2 (B) LDS R1(G)
CP R2, R1 LDSR5 (L)
RGE A ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RET]

STS (D)1 RS Andrew H. Fagg: Embedded Real- 70

Time Systems: Timers/Counters

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)
LDS R2 (B) LDS R1(G)
CP R2, R1 LDSR5 (L)
RGE ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle— PC
STS (D)1 RS Andrew H. Fagg: Embedded Real- 71

Time Systems: Timers/Counters

Interrupt Routines

Generally a very small number of
Instructions

* \We want a quick response so the
processor can return to what it was
originally doing

 No delays, walits, or floating point
operations ...

Andrew H. Fagg: Embedded Real- 72
Time Systems: Timers/Counters

Back to our timer O example...

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

73

Timer 0 Code Example
timerO_config(TIMERO _PRE_1024); // Init: Prescale by 1024

timerO_set(0); // Set the timerto O

<Do something else for a while>
while(timerO_read() < 156) {
<Do something while waiting>

I3
// Break out of while loop at ~10 ms

See Atmel HOWTO for example code (timer_demo?2.c)

Andrew H. Fagg: Embedded Real- 74
Time Systems: Timers/Counters

Timer 0 Example

Advantage over delay ms():
e Can do other things while waiting

e Timing Is much more precise

— We no longer rely on a specific number of
Instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

75

Timer 0 Example

One caution:

* “something else” cannot take very much
time

What is the solution?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

76

Timer O Interrupt

What iIs the solution?
e Use Interrupts!

* \WWe can configure the timer to generate an
interrupt every time that the timer’s
counter rolls over from OxFF to 0x00

Andrew H. Fagg: Embedded Real- 77
Time Systems: Timers/Counters

Timer O Interrupt Example

Suppose:
e 16MHz clock
e Prescaler of 1024

How often Is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

78

Timer 0 Example |

x
Interval = 10247256 =16.384 ms

16,000,000

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

79

Timer O
Interrupt Service Routine (ISR)

An ISR Is a type of function that is called
when the interrupt is generated

ISR(TIMERO_OVF _vect) {
I/l Toggle the LED attached to bit O of port B
PORTB "= 1;

%

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

80

Timer O
Interrupt Service Routine (ISR)

ISR(TIMERO_OVF vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

I3

What is the flash frequency?

16,000,000
1024*256* 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

=30.5176 Hz

frequency =

81

Example I
ISR Initialization in Main Program

/I Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024),

/[Enable the timer interrupt
timerO_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

J

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

82

Timer O with Interrupts

This solution Is particularly nice:

» “something else” does not have to worry
about timing at all

 PBO state is altered asynchronously from
what Is happening in the main program

Andrew H. Fagg: Embedded Real- 83
Time Systems: Timers/Counters

Next Example: Timer 0 Example |

x
Interval = 10247256 =16.384 ms

16,000,000

How many counts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

84

Timer 0 Example |

How many counts do we need so that we
toggle the state of PBO every second?

counts = 1000 ms =61.0352

16.384 ms

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

85

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO_OVF _vect) {

static uint8_t counter;

++counter;

if(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB "= 1;
counter = 0O;

See Atmel HOWTO for example code
(t| me r_d emo .Aq:)ew H. Fagg: Embedded Real-

e Systems: Timers/Counters

86

Example Il: Initialization
(same as before)

/I Initialize counter
counter = 0O;

Il Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024),

/[Enable the timer interrupt
timerO_enable();

I/l Enable global interrupts
sei();

while(1) {
// Do something else
I3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

87

Timer 0 Example |

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

88

Timer 0 Example |

What is the flash frequency?

16,000,000

frequency =
1024*256*61* 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

~ (0.5 Hz

89

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

 Prescalar (1 ... 1024)
e TimerO (256)
e Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real- 90
Time Systems: Timers/Counters

Information Encoding

Many different options for encoding
Information for transmission to/from other

devices:
 Parallel digital (e.qg., for our Project 1)
e Serial digital (Project 2)
 Analog: use voltage to encode a value

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

91

Information Encoding

An alternative: pulse-width modulation
(PWM)

e |[nformation is encoded in the time
netween the rising and falling edge of a
nulse

Andrew H. Fagg: Embedded Real- 92
Time Systems: Timers/Counters

PWM Example:

RC Servo Motors

e 3 pins: power (red),
ground (black), and
command signal (white)

e Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real- 93
Time Systems: Timers/Counters

PWM Example

20 ms
- >~

- >

l\

pulse width
determines motor position

Internal circuit translates pulse width into a goal
position:

0.5 ms: O degrees

1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real- 94
Time Systems: Timers/Counters

RC Servo Motors

 Internal potentiometer measures the
current orientation of the shatft

 Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

 Mechanical stops limit the range of motion

— These stops can be removed for unlimited
rotation

Andrew H. Fagg: Embedded Real- 95
Time Systems: Timers/Counters

PWM Example Il
Controlling LED Brightness
What is the relationship of current flow

through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

96

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

 They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 97
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 98
Time Systems: Timers/Counters

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

e Again: they are linearly related (essentially)

 |If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 99
Time Systems: Timers/Counters

Controlling LED Brightness

We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 100
Time Systems: Timers/Counters

Controlling LED Brightness

How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
counter

e \When the counter is O, turn the LED on

 WWhen the counter reaches some
“duration”, turn the LED off

Andrew H. Fagg: Embedded Real- 101
Time Systems: Timers/Counters

volatile uiInt8 t counter = 0O;
volatile uint8 t duration = O;

ISR(TIMERO_OVF_vect)
{

L

Andrew H. Fagg: Embedded Real- 102
Time Systems: Timers/Counters

volatile uInt8 t counter = 0O;
volatile uiInt8 t duration = 0O;

ISR(TIMERO_OVF vect)
{

++counter;

1f(counter >= duration)
PORTB &= ~1;

else 1f(counter == 0)
PORTB |= 1;

Andrew H. Fagg: Embedded Real- 103
Time Systems: Timers/Counters

Initialization Detalls

e Set up timer
* Enable interrupts

e Set duration in some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real- 104
Time Systems: Timers/Counters

Initialization

int main(void) {
DDRB = OxFF;
PORTB = 0;

/I Initialize counter
counter = 0;
duration = O;

Il Interrupt configuration
timer0O_config(TIMERO_NOPRE); // No prescaler
// Enable the timer interrupt

timer0O_enable();

// Enable global interrupts

sel();

Andrew H. Fagg: Embedded Real- 105
Time Systems: Timers/Counters

PWM Implementation

What is the resolution (how long is one
iIncrement of “duration™)?

Andrew H. Fagg: Embedded Real- 106
Time Systems: Timers/Counters

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

* The timerO counter (8 bits) expires every 256
clock cycles

250

t =
16000000

=16 1S
(assuming a 16MHz clock)

Andrew H. Fagg: Embedded Real- 107
Time Systems: Timers/Counters

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real- 108
Time Systems: Timers/Counters

PWM Implementation

What is the period of the pulse?

* The 8-bit counter (of the interrupt) expires every
256 Interrupts

*
t = 2507256 _ 4.096 ms
16000000

Time Systems: Timers/Counters

Doing “Something Else”

unsigned Int 1;
while(1l) {
for(hn = 0; 1 < 256; ++1)
duration = 1;
delay ms(50);

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

110

Interrupt Service Routines

e Should be very short
— No “delays”
— No busy waiting
— Function calls from the ISR should be short
also
— Minimize looping
— No “printf()”
« Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real- 111
Time Systems: Timers/Counters

Interrupts, Shared Data
and Compiler Optimizations

e Compilers (including ours) will often
optimize code In order to minimize
execution time

 These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real- 112
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations

For example:
A=A+ 1;
C=B*A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real- 113
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;
+

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

114

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A iInto register 1
while(1l) {

PORTB = R1,;
+

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 115
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

ISR(TIMERO OVF vect){
A = PIND;

¥

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

116

Shared Data and Compiler
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF_vect){
A = PIND;
by
 The global variable ‘A’ is being changed!
 The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 117
Time Systems: Timers/Counters

Shared Data and Compiler
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This Is accomplished when we declare the
global variable:

volatile uint8 t A;

Andrew H. Fagg: Embedded Real- 118
Time Systems: Timers/Counters

to serial interrupt example...

Andrew H. Fagg: Embedded Real- 119
Time Systems: Timers/Counters

