Memory

o With combinatorial logic (AND, OR, NOT,

etc.), we could only implement “stateless”
functions

* By Introducing flip-flops, we could
remember something about the history of
the Inputs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Memory

o With combinatorial logic (AND, OR, NOT,
etc.), we could only implement “stateless”
functions

e By introducing sequential logic (with flip-
flops), we could remember something
about the history of the inputs

How do we formalize this idea of “history™?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra
Sequential Logic Finite State Machines
Andrew H. Fagg: Embedded Real- 9

Time Systems: FSMs

Formalizing Memory

Combinatorial Logic Boolean Algebra

Sequential Logic Finite State Machines

This will allow us to express controllers that
take history into account

Andrew H. Fagg: Embedded Real- 10
Time Systems: FSMs

Finite State Machines (FSMs)

Pure FSM form Is composed of:

* A set of states

* A set of possible inputs (or events)

* A set of possible outputs (or actions)

e A transition function:

— Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

11

Finite State Machines (FSMs)

States:

 Represent all possible “situations” that
must be distinguished

e At any given time, the system is in exactly
one of the states

e There Is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

Finite State Machines (FSMs)

An example: our synchronous counter
e States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

13

Finite State Machines (FSMs)

An example: our synchronous counter

e States: the different combinations of the
digits: 000, 001, 010, ... 111

e |nputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

Finite State Machines (FSMs)

An example: our synchronous counter

e |nputs:

— Really only one: the event associated with the
clock transitioning from high to low

— We will call this “C”

e Outputs: ?

Andrew H. Fagg: Embedded Real- 15
Time Systems: FSMs

Finite State Machines (FSMs)

An example: our synchronous counter
o Outputs: same as the set of states

e Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

16

Finite State Machines (FSMs)

An example: our synchronous counter

 Transition function:

— On the clock event, transition to the next state
In the sequence

Andrew H. Fagg: Embedded Real- 17
Time Systems: FSMs

FSM Example:
Synchronous Counter

A Graphical Representation:

(1)

A Set Of States Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

18

FSM Example:
Synchronous Counter

A trapsition

S

(1)

Andrew H. Fagg: Embedded Real- 19
Time Systems: FSMs

FSM Example:
Synchronous Counter

A transition

o

The event

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

20

FSM Example:
Synchronous Counter

A transition

The output

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

21

FSM Example:
Synchronous Counter

The next transition

C/010
C

C/001

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

22

FSM Example:
Synchronous Counter

The next transition

C/010 C/011

010
Cl— ()
C/001

Andrew H. Fagg: Embedded Real- 23
Time Systems: FSMs

FSM Example:
Synchronous Counter

The full transition set

C/010 C/011

010
C— > (@)

@ @
C/111 < cho

Andrew H. Fagg: Embedded Real- 24
Time Systems: FSMs

FSM Example:
Synchronous Counter

Inltlal condition

C/010 C/011

010
x/OOO —> -5
C/001 \

C/OOO
(e

cni1r < cho

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

25

Example Il: An Up/Down Counter

Suppose we have two events (instead of
one):. Up and down

 How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

26

Example Il: An Up/Down Counter

From state 000, there are now two possible

transitions
®

U/001

\D/l 11

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

27

Example Il: An Up/Down Counter

Likewise for state 001...

U/001
D/000

N
()

U/010

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

Example Il: An Up/Down Counter

The full transition set

U/010 U/011

010
(00) —— T ——= ()

o V D/001 D/010 U/100
D/111 @
D/100
U/101

U/000
~ D/110 /101
@
U/111 " U/110

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

33

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

e |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

34

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are ?

Andrew H. Fagg: Embedded Real- 35
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are the control actions

Andrew H. Fagg: Embedded Real- 36
Time Systems: FSMs

FSMs: A Control Example

Suppose we have a vending machine:
e Accepts dimes and nickels

« Will dispense one of two things once $.20
has been entered: Jolt or Buzz Water

— The “user” requests one of these by pressing
a button

 |gnores select if < $.20 has been entered
* Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real- 40
Time Systems: FSMs

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

41

Vending Machine FSM

What are the states?
« 30

e $.05

¢ $.10

¢ $.15

¢ $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

42

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

43

Vending Machine FSM

What are the inputs/events?
 Input nickel (N)

 Input dime (D)

o Select Jolt (J)

e Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

44

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Vending Machine FSM

What are the outputs?
Return nickel (RN)
Return dime (RD)
Dispense Jolt (DJ)
Dispense Buzz Water (DBW)
Nothing (Z)

Andrew H. Fagg: Embedded Real- 46
Time Systems: FSMs

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

47

Vending Machine Design

What is the nitial state?
e S=%0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

48

Vending Machine Design

What can happen from Event

S =%07?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

49

Vending Machine Design

What can happen from
S =3%$07?

What does this part of
the diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.05 Z
D $.10 Z
J $0 Z
BW $0 Z

Time Systems: FSMs

50

Vending Machine Design

A piece of the state diagram:

\ N/Z ‘
J/7 D/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

51

Vending Machine Design

What can happen from Event

S = $0.05?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

52

Vending Machine Design

What can happen from
S =$0.057

What does the modified
diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.10 Z
D $.15 Z
J $.05 Z
BW $.05 Z

Time Systems: FSMs

53

Vending Machine Design
A piece of the state diagram:
é’vzwz()
\ 'Z/ —

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

54

Vending Machine Design

What can happen from Event

S =%0.107

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

55

Vending Machine Design

What can happen from
S =%$0.107?

Event | Next | Output
State
N $.15 Z
D $.20 Z
J $.10 Z
BW $.10 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

56

Vending Machine Design

A piece of the state diagram:

J/iZ
BW/Z O

“”\/

J/Z
BW/zZ

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

57

Vending Machine Design

What can happen from Event

S =$0.15?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

58

Vending Machine Design

What can happen from
S =$%$0.157

Event | Next | Output
State
N $.20 Z
D $.20 RN
J $.15 Z
BW $.15 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

59

Vending Machine Design

A piece of the state diagram:

N7 N7
BW/Z O O BW/Z

\ 59 |
A%

J/Z
BW/Z

J/Z
BW/zZ

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

60

Vending Machine Design

Finally: what can

happen from S =

$0.207?

Event

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

61

Vending Machine Design

Finally, what can

happen from S =

$0.207?

Event | Next | Output
State
N $.20 RN
D $.20 RD
J $0
BW $0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Vending Machine Design

The complete state diagram:
JB’VZWZQ Q awiz
\ /Z/v

CM

J/iZ
BW/Z

J/Z

BW/zZ

N/Z
D/RN N/RN
D/RD

J/DJ

BW / DBW

Andrew H. Fagg: Embedded Real- 63
Time Systems: FSMs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

J/DJ

BW / DBW

64

Today

 Finite state machines and control

* Implementation of finite state machines In
code

Project 3 due Thursday
Homework 4 due Tuesday

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

65

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

66

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

e |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

67

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are ?

Andrew H. Fagg: Embedded Real- 68
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are the control actions

Andrew H. Fagg: Embedded Real- 69
Time Systems: FSMs

A Robot Control Example

Consider the following task:

e The robot Is to move toward the first
beacon that it “sees”

e The robot searches for a beacon in the
following order: right, left, front

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 70
Time Systems: FSMs

Robot Control Example Il

Consider the following task:

 The robot must lift off to some altitude
 Translate to some location

e Take pictures

e Return to base

 Land

e At any time: a detected failure should cause the
craft to land

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 71
Time Systems: FSMs

Control Example Il

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

FSMs As Controllers

 Need code that translates sensory inputs
iInto FSM events

 An FSM output can require an arbitrary
amount of time
— We will often implement this control action as
a separate function call
e Control actions will not necessarily be
fixed (but could be a function of sensory
iInput)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

73

FSMs As Controllers (cont)

e \We might choose to leave some events
out of the Implementation

— Only some events may be relevant to certain
states
 When In a state, the FSM may also issue

control actions (even when a new event
has not arrived)

— Again, this may be implemented as a function
call

Andrew H. Fagg: Embedded Real- 74
Time Systems: FSMs

FSMs In C

Int state = 0O; // Initial state
while(1l) {
<do some processing of the sensory
switch(state) {
case O:
<handle state 0>
break;
case 1:
<handle state 1>
break;
case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

inputs>

75

FSMs In C

Int state = 0O; // Initial state
whi
<do some proce
switch(state) {

case O:
<handle state 0>

tng of the sensory i1nputs>

1break; Variable

case 1: |

<handle state 1> Fie_qlqrat|pn and
break; Initialization

case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

76

FSMs In C

i 5 = 0; // Initial state

arocessing of the sensory i1nputs>
switch(state
case O:
<handle state
break;
case 1:
<handle state 1>
break;
case 2: ..

Loop forever

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

77

FSMs In C

INt state = 0O; // Initial state

while(l
<§§§g;%;§7processing of the sensory inputs>>

switch(state)y =<
case O:
<handle state 0>
break; “pseudo code”:
case 1: t really code
<handle state 1> no _ _ y ,
break; but indicates what
case 2: .. IS to be done
+
+
Andrew H. Fagg: Embedded Real- 78

Time Systems: FSMs

FSMs In C

INt state = 0O; // Initial state

while(l
<§§§g;%;§7processing of the sensory inputs>>

switch(state)y—=<
case O: . .
<handle state 0> In this case: we will
break: translate the
case 1:h N . current sensory
<nhan e state > . .
break: Inputs into 6_1
case 2- representation of
} an event (if one
¥ has happened)
Andrew H. Fagg: Embedded Real- 79

Time Systems: FSMs

FSMs In C

INt state = 0O; // Initial state

while(1) {
<do_same processing of the sensory inputs>
! case O: ! \ .
<handle state 0> Switch/case syntax
break; allows us to cleanly
case 1:h N . perform many
<nan e state > 1% —_— ” 1
break - If(x==y)” operations
case 2: .
}
}

Andrew H. Fagg: Embedded Real- 80
Time Systems: FSMs

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>

switch(state) {
case 0:)

<handle state 0> If state==0, then
break; execute the

case 1: following code
<handle state 1>
break;

case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

81

FSMs In C

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O: _
@;'f state 055 This code can be as
break; complex as

case 1: necessary
<handle state 1>
break;

case 2: ..

}
¥
Andrew H. Fagg: Embedded Real- 82

Time Systems: FSMs

FSMs In C

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O: :
<hand SW break says to exit

Cbreak; the switch (don’t
case 1: forget it or strange

<handle state 1>
break;
case 2: ..

things can happen!)

Andrew H. Fagg: Embedded Real- 83
Time Systems: FSMs

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:

(E?se 1E:>

<handle state 1>
break;
case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

<handle state If state==1, then ...
break;

84

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:
<handle state 0>
break;
case 1:

End of the switch
block

e state 1>

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

85

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:
<handle state 0>
break;
case 1:
<han

End of the while
block

state 1>

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

86

FSMs in C (some other
possibilities)

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O:
<handle state 0>
break;
defaul t:
<handle default case>
break;
¥
<do some low-level control>
¥

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

96

FSMs in C (some other
possibilities)

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:

<handle state 0> Matches any state
break; : :
: / (If we reach this
poin)
<handle default case>

break;
<do some low-level control>
Andrew H. Fagg: Embedded Real- 97

Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O:
<handle state 0> (pOSSlbly) alter
break;
: some control
default: outputs (e.g.,
<handle default gase> gtaaring direction)
break;
ks
(Eggsome low-level contréj}Z)
s
Andrew H. Fagg: Embedded Real- 98

Time Systems: FSMs

Handling Each State

* You will need to provide code that handles
the event processing for each state

e Specifically:
— You need to handle each event that can occur

— For each event, you must specify:
 What action is to be taken
 What the next state Is

Andrew H. Fagg: Embedded Real- 99
Time Systems: FSMs

Handling Each State

In our vending machine example:

 Events are easy to describe (only a few
things can happen)

e |t IS convenient in this case to also “switch”
on the event

Andrew H. Fagg: Embedded Real- 100
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {
case EVENT NICKEL: // Nickel
state = STATE 15cents; // Transition to $.15
break;
case EVENT DIME: // Dime
state = STATE 20cents; // Transition to $.2
break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display NOT_ENOUGHQ);
break;

case EVENT_NONE: // No event
break; // Do nothing

¥

break;

Andrew H. Fagg: Embedded Real- 101
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:

// $. zs—already been deposited
A MT NNCKEL: // Nickel

state QTATE _15cents; // Transition to $.15
break;

case EVENT DIME: // Dwge
state = STATE 20cems; // Transition to $.2

break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwate

display_ NOT_ENOUGHQ);

break: Another integer
case EVENT_NONE: // No event
break; // Do nothing
}:
break;
Andrew H. Fagg: Embedded Real- 102

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has

2 event) {

case EVENT_NICKEL:

state = STAT

break;

case EVENT DIME: // Dime
state = STATE_20cents;
break;

case EVENT JOLT: // Select Jolt

case EVENT BUZZ: // Select Buzzwater

eposited

// Nickel

; // Transition to $.15

Transition to $.2

display_NOT_ENOUGH(Q); .
case EVENT_NONE: // No event been recelved
break; // Do nothing
}:
break;
Andrew H. Fagg: Embedded Real- 103

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {

—NTCKEL: /7Nt
state = STATE_15cents; / ransition to $.15
break;

- e
state = STATE 20cents; /AJTransition to $.2
break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display_ NOT_ENOUGHQ);
break;

case

Change state for

case EVENT_NONE: // No event

break; /7 0o nothing Next iteration of
o the while() loop
Andrew H. Fagg: Embedded Real- 104

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {
case EVENT NICKEL: // Nickel
state = STATE 15cents; // Transition to $.15
break;
case EVENT DIME: // Dime
= // Transition to $.2

break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display_ NOT_ENOUGHQ);
break;

If any of these
match, then execute
the following code

case EVENT_ NONET 77 NO event _ _
break; // Do nothing (WhICh does nOth|ng
}; In this example)
break;
Andrew H. Fagg: Embedded Real- 105

Time Systems: FSMs

A Note on “Style” In C

The numbers that we assigned to the
different states are arbitrary (and at first
glance, hard to interpret)

Instead, we can define constant strings
that have some meaning

Replace: 0,1, 2, 3,4,5
With: STATE_00, STATE_05, STATE_10,

S

ATE 15, STATE 20

Andrew H. Fagg: Embedded Real- 106
Time Systems: FSMs

A Note on “Style” In C

In C, this Is done by adding some
definitions to the beginning of your
program (either in the .c file or the .h

file):

#define STATE OOcents
#define STATE O5cents
#define STATE_10cents
#define STATE_ 15cents
#define STATE_20cents

Andrew H. Fagg: Embedded Real-

A WNPEFEO

Time Systems: FSMs

107

Handling Each State

Some events do not fall neatly into one of several
categories

e This precludes the use of the “switch” construct

 For example: an event that occurs when our hel
reaches a goal orientation or a goal height

* For these continuous situations, we typically use
an “If” construct:

1T(heading error < 20 && heading error > -20){.}

Andrew H. Fagg: Embedded Real- 108
Time Systems: FSMs

Next Time

Project 4. come ready to begin work In class

Andrew H. Fagg: Embedded Real- 109
Time Systems: FSMs

