Components of a Microprocessor

Andrew H. Fagg: Embedded Real- 1
Time Systems: Microcontrollers

Components of a Microprocessor

« Memory:
— Storage of data
— Storage of a program

* Registers: small, fast memories

— General purpose: store arbitrary data

— Special purpose: used to control the
processor

Andrew H. Fagg: Embedded Real- 2
Time Systems: Microcontrollers

Special Purpose Registers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Components of a Microprocessor

e |nstruction decoder:

— Translates current program instruction into a
set of control signals

 Arithmetic logical unit:

— Performs both arithmetic and logical
operations on data

 Input/output control modules

Andrew H. Fagg: Embedded Real- 4
Time Systems: Microcontrollers

Components of a Microprocessor

 Many of these components must
exchange data with one-another

e |t IS common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real- 5
Time Systems: Microcontrollers

Buses

* In the simplest form, it Is a single wire

 Many different components can be
attached to the bus

e Any component can take input from the
bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Buses

e At most one component may write to the
bus at any one time

* \Which component is allowed to write Is
usually determined by the instruction
decoder (in the microprocessor case)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Collections of Bits

e 8 bits: a “byte”
e 4 bits: a “nybble”

e “words”™. can be 8, 16, or 32 hits
(depending on the processor)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Collections of Bits

A data bus typically captures a set of bits
simultaneously

So: one wire for each of these bits

In the Atmel Mega8: the data bus is 8-bits
“wide”

In your home machines: 32 or 64 bits

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

10

A Memory Abstraction

 We think of memory as an array of
elements — each with 1ts own address
e Each element contains a value

— It Is most common for the values to by 8-bits
wide (so a byte)

0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B

o 1 2 3 M_

Andrew H. Fagg: Embedded Real- 14
Time Systems: Microcontrollers

A Memory Abstraction

 We think of memory as an array of
elements — each with 1ts own address

e Each element contains a value

— It Is most common for the values to by 8-bits
wide (so a byte)

Stored value

£
0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B
0 1 2 3
K Andrew H. Fagg: Embedded Real- 2'1\/[_151

Address Time Systems: Microcontrollers

Memory Operations

Read
Tfoo(A+5);

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.
The result is passed to a function called
foo();

Andrew H. Fagg: Embedded Real- 16
Time Systems: Microcontrollers

Memory Operations

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real- 17
Time Systems: Microcontrollers

Types of Memory

Random Access Memory (RAM)

 Computer can change state of this
memory at any time

e Once power Is lost, we lose the contents
of the memory

e This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

18

Types of Memory

Read Only Memory (ROM)

 Computer cannot arbitrarily change state
of this memory

 When power is lost, the contents are
maintained

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

19

Types of Memory

Erasable/Programmable ROM (EPROM)

e State can be changed under very specific
conditions (usually not when connected to

a computer)

e Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Andrew H. Fagg: Embedded Real- 20
Time Systems: Microcontrollers

Last Time

* Flip-flops as 1-bit storage devices

° Microprocessor components
— Random access memory
— Program memory
— Instruction decoder
— Arithmetic logical unit

e Binary and hexadecimal number systems

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

21

Today

Memory behavior

Atmel mega8 microcontroller
Assembly language (just a hint)
Digital 1/0 with the Atmel mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

22

Administrivia

e Homework 2 is out
— Due on February 14t (one week)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

23

Example: A Read/Write
Memory Module

Inputs:

2 Address bits: A0 and Al

1 “chip select” (CS) bit

1 read/write bit (1 = read; 0 = write)
1 clock signal (CLK)

Input or Output:
» Data bit (connected to the “data bus”)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

24

A Read/Write Memory Module

/ Address Data L
M Bus Bus N
CS
R/W
CLK

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

A Read/Write Memory Module

Address Data
Bus Bus
CS

R/W

CLK

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Z

rd

N
Inputs or
outputs

Our
example:

e M=2
e N=1

26

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

How could we implement each memory
element?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

27

Implementing A Read/Write
Memory Module
With 2 address bits, how many memory
elements can we address?
e 4 1-bit elements

How could we implement each memory
element?

o With a D flip-flop
— (more about this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

28

Memory Module Specification

“chip select” signal:

* Allows us to have multiple devices (e.g.,
memory modules) that can write to the bus

e But: only one device will ever be selected
at one time

Andrew H. Fagg: Embedded Real- 29
Time Systems: Microcontrollers

Memory Module Specification

When chip select is low:
« No memory elements change state
 The memory does not drive the data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

30

Memory Module Specification

When chip select is high:

. If R/W is high:

— Drive the data bus with the value that Is
stored In the element specified by Al, AO

e If R/W is low:

— Store the value that is on the data bus In the
element specified by Al, AO

Andrew H. Fagg: Embedded Real- 31
Time Systems: Microcontrollers

Memory Timing Diagram

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

32

Memory Timing Diagram

AN Data bus not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

33

Memory Timing Diagram

@
AL/ \
AO _

Memory element 2 Is

W T\ initially in a high state
cs __/

CLK. AN

D N

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

34

Memory Timing Diagram

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

35

Memory Timing Diagram

Q2

AL/

AO

R/vv:—_/ Chip Is selected
cs K D

CLK. N

D N

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

36

Memory Timing Diagram

Address memory

. element 2
R'W

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

37

Memory Timing Diagram

Q2
AL/
AO
R,W:—Q — Specify a write operation
cs /
: . .
CLK. —— Data bus is driven low
D :—@ — (by another device)

Andrew H. Fagg: Embedded Real- 38
Time Systems: Microcontrollers

Memory Timing Diagram

<)L
Q)——clock goes low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

39

Memory Timing Diagram

Q2 \
N 4 Memory element 2

. changes state to low

A0

Andrew H. Fagg: Embedded Real- 40
Time Systems: Microcontrollers

Memory Timing Diagram

Q2 B
AL/ 1 |

] P Setup time: all
AD inputs must be valid
RIW NI during this time
cs /o
CLK \
e I e

! ! Andrew H. Fagg: Embedded Real- 41

Time Systems: Microcontrollers

Memory Timing Diagram

Q2
AL/

\

P Hold time: all inputs

AO must continue to be
RW. N\t 1 valid

CLK. \

R I I

Andrew H. Fagg: Embedded Real- 42
Time Systems: Microcontrollers

Memory Timing Diagram ||

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

43

Memory Timing Diagram ||

Q2

AL/

AO

RW /

cS . /

CLK.

D Q — Data bus is not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

44

Memory Timing Diagram ||

rRW._ What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

45

Memory Timing Diagram ||

AO On chip select —
W , drive data bus from

Q2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

46

Memory Timing Diagram ||

ar What happens
now?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

47

Memory Timing Diagram ||

Q2
AL/
AOD Data bus

] returns to a
RW____/ non-driven
cs / } state
CLK X
D \ S

Andrew H. Fagg: Embedded Real- 48

Time Systems: Microcontrollers

Memory Summary

Many independent storage elements

Elements are typically organized into 8-bit
bytes

Each byte has its own address
The value of each byte can be read

In RAM: the value can also be changed
quickly

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

49

Atmel Mega8

Data Bus 8-bit

An Example: the
«

Time Systems: Microcontrollers

Program Status
Flash - Ea
Program Counter and Control
Memory =
l Interrupt
. 32x8 Unit
Instruction General
Register Purpose SP
Registrers v Unit
3
Instruction Watchdo
Decoder y h 4 il Timer °
(=]
] w
8 £ ALU - Analog
Control Lines = pe. Comparator
pa 3
[o
@ =
= k= 2o
= = ™ i/O Module1
< sﬁiﬂ » /O Module 2
» /O Module n
EEPROM
I/O Lines
Andrew H. Fagg: Embedded Real- 54

Atmel Mega8

8-bit data bu

 Primary
mechanism
for data
exchange

Flash ¥

Program
Memory =

Program
Counter

:

Instruction
Register

Data Bus 8-bit

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General
Purpose SP
Registrers Unit
Watchdog
Timer
Analog
Comparator
IO Module1
i’O Module 2
i/O Module n
EEPROM
I/O Lines
55

Data Bus 8-bit

Atmel Mega8
«

:

32 general

Flash
Program
Memory

il

purpose

Instruction
Register

registers

Program
Counter

3

Instruction
Decoder

e 8 bits wide

e 3 pairs of
registers can
be combined
to give us 16
bit registers

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose
Registrers

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

56

Atmel Mega8
«

Special
purpose
registers

Program
Counter

Instruction
Register

Data Bus 8-bit

Status
and Control

Instruction
Decoder

e Control of the
Internals of
the
processor

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

57

Data Bus 8-bit

Atmel Mega8
«

:

Flash n Fg;ﬁ;g o an? tgi:unirol
Random Access [& L
;
Memory (RAM) Instruction Gsezn;raal
Register Purpose
Registrers
1 KByte In size]
3 ALU
Control Lines E
E

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

58

Atmel Mega8
«

Random Access
Memory (RAM)

1 KByte In size

Note: in high-end
Processors,
RAM is a
separate
component

Data Bus 8-bit

:

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Interrupt
Unit

SPI
Unit

Program Status
Flash - Ea
Program Counter and Control
Memory =
l 32x8
Instruction General
Register Purpose
o Registrers
= y ¥
= N
w
3 ALU
5 =
Control Lines Z
T
2
B=
£

1/O Lines i

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

59

Data Bus 8-bit

Atmel Mega8
«

:

Flash (EEPROM

 Program

storage

8 KByte In size

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

Program Status
Flash e
Program Counter and Control
Memory
32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder - F h 4
@ ? ALU
. o T
Control Lines B Z
< =
.- &
[&] O
i) =
) -
a =
Data
SRAM
EEPROM
1/O Lines

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

i/O Module n

60

Atmel Mega8

Flash (EEPROM)

* Inthis and many [z
microcontrollers,

program and
data storage Is
separate

 Not the case In
our general
purpose
computers

Data Bus 8-bit

y_

< I

Program Status
Flash e s
Program Counter and Control
Memory
— Interrupt
o Unit
General
Purpose kg SP|
Regist v Unit
¥
Instruct Watchdo
Decod 4 h 4 - Timer)
(=]
] w
o E ALY " Analog
Control Lines i Z Comparator
= 5
[&] O
i) =
= - <o
e £ ™ /0 Module1
sfﬁiﬂ bt /0 Module 2
/O Module n
EEPROM e
1/O Lines e
61

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Atmel Mega8
«

EEPROM

e Permanent
data storage

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

:

Instruction
Register

Status
and Control

3

Instruction
Decoder

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

hvd

ALU

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data
SRAM

i’O Module1

i’O Module 2

Y

1/O Lines

i/O Module n

62

Data Bus 8-bit

Atmel Mega8
«

Arithmetic

Logical Unit
e Data Inputs

from registers

e Control inputs
not shown
(derived from
Instruction
decoder)

Program Status
Flash e P
Program Counter and Control
Memory
l 32x8
Instruction General
Register Purpose =
Registrers
N
Instruction
Decoder
o
l IE Im
w w
@ o
. o T
Control Lines B Z V
< =
.- &
[&] O
i) =
) -
a =
Data
> SRAM -

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

EEPROM i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

1/O Lines i

63

Machine-Level Programs

Machine-level programs are stored as
seguences of atomic machine instructions

e Stored In program memory

e Execution Is generally sequential
(instructions are executed in order)

e But — with occasional “jumps” to other
locations in memory

Andrew H. Fagg: Embedded Real- 68
Time Systems: Microcontrollers

Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jJump conditionally (e.qg., if the last test was
true)

Andrew H. Fagg: Embedded Real- 69
Time Systems: Microcontrollers

Atmel Mega8: Decoding Instructions

Program
counter

e Address of
currently
executing
Instruction

Data Bus 8-bit

Instruction

Register

Program
Counter

Status
and Control

32x8

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines

70

Atmel Mega8: Decoding Instructions

«

Instruction
register —™——

e Stores the
machine-level
Instruction
currently being
executed

Data Bus 8-bit

:

Flash
Program
Memory

Program
Counter

N

Instruction
Register

Status
and Control

32x8

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines

71

Data Bus 8-bit

Atmel Mega8
«

:

Instruction By e et
decoder l -

» Translates | 5=
current | |\~ i
instruction into
control signals 1o
for the rest of -
the processor

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

i’O Module1

i’O Module 2

Y

i/O Module n

12

Atmel Mega8
«

Status register

 Many machine

Instructions

Data Bus 8-bit

:

Flash ¥

Program
Memo

Instruction
Register

Program
Counter

Status
and Control

3

Instruction
Decoder

affect the state .
of this register

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

73

Some Mega8 Memory Operations

We refer to this as

LDS Rd, k4/ “Assembly Language”

 Load SRAM memory location k into
register Rd

e Rd <- (k)

STS Rd, k
e Store value of Rd into SRAM location k

e (k) <-Rd

Andrew H. Fagg: Embedded Real- 81
Time Systems: Microcontrollers

Load SRAM Value to Register

LDS Rd, k

Data Bus 8-bit

< I

Program Status
Flash - e
Program Counter and Control
Memory -
- 32x8
Instruction General
Register Purpose
< Registrers
¥
Instruction
Decoder -
(=] =
l = 5
w w
@ b
) o =
Control Lines =z Z
<< =
-— O
[&] @O
1] =
=, =
(] =

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

SRAM

EEPROM i

/O Lines e

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n

82

Store Register Val
«

STS Rd, k

Data Bus 8-bit

:

Program Status
Flash - e
Program Counter and Control
Memory -
- 32x8
Instruction General
Register Purpose
< Registrers
¥
Instruction
Decoder -
(=] =
l = 5
w w
@ b
) o =
Control Lines =z Z
<< =
-— O
[&] @O
1] =
=, =
(] =

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

SRAM

EEPROM i

/O Lines e

ue to SRAM

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n

83

Some Mega8 Arithmetic and

Logical Instructions
ADD Rd, Rr
 Rd and Rr are registers
e Operation: Rd <- Rd + Rr

* Also affects status register (zero, carry,
etc.)

ADC Rd, Rr
e Add with carry
e Rd<-Rd+Rr+C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

85

Add Two Register

ADD Rd, Rr

e Fetch register
values

Values

Data Bus 8-bit

< I

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

Program Status
Flash - e
Program Counter and Control
Memory -
» 32x8
Instruction General
Register Purpose
Registrers
, I I
Instruction
Decoder -
(=] =
l £ 5
w w
@ b
) o =
Control Lines =z Z
< P
-— O
[&] @O
1] =
=, =
(] =
Data
> SRAM
EEPROM
/O Lines

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

i’O Module 2

ilO Module n

86

Add Two Register Values

Data Bus 8-bit

«

ADD Rd, Rr

e Fetch register
values

e ALU performs
ADD

:

Flash
Program
Memory

Program
Counter

F 3

Instruction
Register

Status
and Control

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

I Registrers I

32x8
General
Purpose

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data
SRAM

EEPROM i

/O Lines e

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n

87

Data Bus 8-bit

Add Two Register Values
«

Program Status
Flash - wl po—i
Program Counter and Control
y r Memory o}
Interrupt
. —t > 632:(8! Unit
nstruction eneral
e Fetch reqister
+ Registrers Unit
, —
Va ueS Instruction Watchdog
Decoder i Timer
(=] =
l IE Im
7] w
@ z Analog
o
 ALU performs ..l I compart
- 3
(%] O
@ =
= = [
/ \DD = = 1 /O Module1

o Result IS - sﬁin] /0 Module 2

written back to =
regISter Vla the I/O Lines [a—m
data bus

Andrew H. Fagg: Embedded Real- 88
Time Systems: Microcontrollers

Some Mega8 Arithmetic and
Logical Instructions

NEG Rd: take the two’s complement of Rd

AN
AN
EO

D Rd, Rr: bit-wise AND with a register
Dl Rd, K: bit-wise AND with a constant

R Rd, Rr: bit-wise XOR

INC Rd: increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rd: multiply (signhed)

Andrew H. Fagg: Embedded Real- 89
Time Systems: Microcontrollers

Some Mega8 Test Instructions

CP Rd, Rr
« Compare Rd with Rr
 Alters the status register

S

Rd

e Test for zero or minus
o Alters the status register

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

90

Some Mega8 Test Instructions

Modify the
status
register

«

Flash
Program
Me

Data Bus 8-bit

and Control

Status

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

hvd

ALU

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

91

Some Program Flow Instructions

RIMP k
 Change the program counter by k+1
« PC<-PC+k+1

BRCS k
 Branch if carry set
e fC==1thenPC<-PC+k+1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

92

Atmel Mega8: Decoding Instructions

Results in a
change to
the program
counter

 May be
conditioned
on the status
register

Data Bus 8-bit

Program
Counter

Status
and Control

32x8

Instruction
Register

General
Purpose

3

Instruction
Decoder

l

Control Lines

Direct Addressing
Indirect Addressing

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines

93

Connecting Assembly Language to C

e Our C compiler is responsible for
translating our code into Assembly
Language

e Today, we rarely program in Assembly
Language
— Embedded systems are a common exception

— Also: It Is useful In some cases to view the
assembly code generated by the compiler

Andrew H. Fagg: Embedded Real- 98
Time Systems: Microcontrollers

An Example

A C code snippet:

if(B < A) {
D +=A;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

99

An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

(B < A) 1 CP R2, R1

D +=A; BRGE 3

} LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real- 100
Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A) <« PC
LDS R2 (B)
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location A into register 1 STS (D)’ R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B) <+— PC
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location B into register 2 STS (D)’ R3

Time Systems: Microcontrollers

An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

if(B < A) { CPR2, Rl < PC
D +=A; BRGE 3

} LDS R3 (D)

Compare the contents of register ADD R3, R1

2 with those of register 1 STS (D), R3

This results in a change tothe
status register Andrew H. Fagg: Embedded Real- 103

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2, R1

D+=A;

BRGE3 < PC
} /LDS R3 (D)
ADD R3, R1

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true STS (D), R3

Andrew H. Fagg: Embedded Real- 104
Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE 3
} / LDS R3 (D)
ADD R3, R1

If true
Branch if greater than or equal to
will jump ahead 3 instructions if STS (D), R3
true
........ <+ PC
Andrew H. Fagg: Embedded Real- 105

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A){ CP R2, R1
D += A, | BRGE 3
} If not true | DS R3 (D) <« PC
Not true: execute the next ADDR3, R1
Instruction STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A) { CP R2, R1
D +=A; BRGE 3
} LDS R3 (D) <+ PC
/ ADD R3, R1
Load the contents of memory
location D into register 3 STS (D), R3

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
Adq the values in «+«—ADD R3, R1 «— PC
e STS (D), R3
register3 L

Time Systems: Microcontrollers

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
(B <A) { CP R2, R1
D+=A; BRGE 3
} LDS R3 (D)
Store the value in register ADD R3, R1

3 back to memory 4\8 S(D) R3 «— PC

location D

Andrew H. Fagg: Embedded Real- 109
Time Systems: Microcontrollers

Summary

Instructions are the “atomic” actions that are taken
by the processor

* One line of C code typically translates to a
sequence of several instructions

* |In the mega 8, most instructions are executed In
a single clock cycle

The high-level view is important here: don’t worry
about the detalls of specific instructions

Andrew H. Fagg: Embedded Real- 110
Time Systems: Microcontrollers

Atmel Mega8 Basics

PDIP
 Complete, stand- o
a| one com p uter (RESET) PC6 [] 1 28 [1 PC5 (ADC5/SCL)
(RXD) PDO] 2 27 [1 PC4 (ADC4/SDA)
° I _Ni (TXD) PD1 3 26 [1 PC3 (ADC3)
Ours Is a 28 pln (INTO) PD2 [4 25 [1 PC2 (ADC2)
pac kage (INT1) PD3[]5 24 1 PC1 (ADC1)
(XCK/T0) PD4 [6 23 [J PCO (ADCO)
° I . vee 7 22 [1GND
MOSt pInS. GND []8 21 [0 AREF
_ (XTAL1/TOSC1) PB6] 9 20 [J AVCC
Are used for (XTAL2/TOSC2) PB7 []10 19 [1 PB5 (SCK)
mput/output (T1) PD5] 11 18 [1 PB4 (MISO)
(AINO) PD6 [12 17 [1 PB3 (MOSI/OC2)
— How they are used (AIN1) PD7 []13 16 [1 PB2 (SS/OC1B)
IS Conflgurable (ICP1) PBO[] 14 15 0 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

117

Atmel Mega8 Basics

PDIP
Power (we will use -
(RESET) PC6 [1 28 [1PC5 (ADC5/SCL)
+5V) (RXD) PDO]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 3 26 [1PC3 (ADC3)
(INTO) PD2] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
KIT 6 23 [1 PCO (ADCO)
< VCC L > 22 [1GND
8 21 [1 AREF
(XTAL1/TOSC1) PB6]9 20 J AVCC
(XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK)
(T1) PD5] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO] 14 15 [0 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

118

Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6 [} 1 28 |1 PC5 (ADC5/SCL)
(RXD) PD0 2 27 J PC4 (ADC4/SDA)
(TXD) PD1[]3 26 1 PC3 (ADC3)
INTO) PD2] 4 25 |1 PC2 (ADC2)
<) 24 11 PC1 (ADC1)
CK/TO) PDA L 6~ ? (ADCO)
22 1 GND
(GND L 8) 2 EF
(XTAL1/TOSC1) P 9 20 L AVCC
(XTAL2/TOSC2) PB7] 10 19 [0 PB5 (SCK)
(T1) PD5 [11 18 0 PB4 (MISO)
(AINO) PD6[] 12 17 @ PB3 (MOSI/OC2)
(AIN1) PD7 13 16 [d PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 0 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 119

Time Systems: Microcontrollers

Atmel Mega8 Basics

PDIP
Reset _ =
_ CRESET) PCo] 1 28 [1 PC5 (ADC5/SCL)
e Bring low to reset = “mereeer 27 [1PC4 (ADCA/SDA)
(TXD) PD1 [3 26 [1PC3 (ADC3)
the processor (INT0) PD2] 4 25 [1PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADC1)
° I (XCK/TO) PD4] 6 23 [0 PCO (ADCO)
In general, we will poage 2pRoo
' I I ' GND[]8 21 [1AREF
tie this pIn to hlgh (XTAL1/TOSC1) PB6]9 20 1 AVCC
through a pu”_up (XTAL2/TOSC2) PB7 [10 19 [0 PB5 (SCK)
(T1) PD5] 11 18 [1 PB4 (MISO)
resistor (1OK Ohm) (AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7] 13 16 |1 PB2 (SS/OC1B)
(ICP1) PBO [] 14 151 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 120

Time Systems: Microcontrollers

Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND []8 21 [0 AREF
(XTAL1/TOSC1) PB6 J 20)4
(XTAL2/TOSC2) PB7 ED Y[PB5 (SCK)
5] 11 8 [0 PB4 (MISO)
(AINO) PD6 [] 12

(AIN1)
(ICP() PBO [

—rt Y
(98]

1 PB2 (SS/0C1B)

(
(

] PB3 (MOSI/OC2)
(SS.

(] PB1 (

OC1A

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

121

Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD
(INTO
(INT1

(XCK/TO

PD1 [
PD2
PD3 [
PD4 [
Veloln
GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7 [
(T1) PD5
(AINO) PD6 [
)

)

T T e

(AIN1) PD7 [
(ICP1) PBO [

S

19 1PB5
18 |1 PB4
17 1 PB3
16 |1 PB2
15 |1 PB1

SCK)
MISO)
MOSI/OC2)
(SS/OC1B)
OC1A)

—‘—\a—-a—-ha—-na—-n

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

122

Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP

(RXD) PDO
(TXD) PD1 [

)
)
(INTO) PD2
)
)

(INT1) PD3 [
K/TO) PD4
C

GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC
(T1) PD5 O
(AINO) PD6 [
AIN1) PD7 [

S

28
27
26
25
24
23
22
21
20
19
18
3 74
16
15

1 PC5 (

1 PC4 (

1 PC3 (

1 PC2 (ADCz
1 PC1 (

1 PCO (
1GND

] AREF

1AVCC

1 PB5 (SCK)

[PB4 (MISO)

1 PB3 (MOSI/OC2)
1 PB2 (SS/OC1B)
1 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

123

A First
Circult

28 27 26 25 24 23 22
ENESESEREEEEE

21 20 19 18 17 16 15
ENEEEEERENEEE

PC5 PC3 PCl
PC4 PC2

) Atmel

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2
PCO AREF PBS

GND PB7
VCC PB6

PB3 PBI
Mega8

PD6 PBO
PD5 PD7

NEENERERERNEN
1 2 3 4 5 6 7

W .

+5V

HpERERERNENEN
8 9 10 11 12 13 14

. MA—
200 ohm

vy

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

124

Data Bus 8-bit

Atmel Mega8
«

:

Program Status
Counter and Control

Flash ¥

Control the pins e |,

l Interrupt
through the o (I =
nstruction enera
g Register Purpose SPI
+ Registrers e Unit
/O modules ~
Instruction Watchdo
Decoder 4 h 4 - Timer)
e At the heart, '
Comparator

Control Lines

Direct Addressing
Indirect Addressing
[6
&
c
3
F

these are
registers ... 1 me Lk

» SRAM =

{ /O Module1

i’O Module 2

that are ;

i/O Module n

|mp|emented EEPROM |a—m
using D flip- - 14

ﬂOpSl Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

125

/O Pin Implementation

A

Single bit of 1< & l

o Tle
PORT B =3

RESET

Ad
VY
u]
W]
-

/X
L .
.
o
X

Pxn & \ 4

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

A

The physical A=< (= |

OD<

p i n D-D:n<
ET _|— WDx

RESET

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

PUD

DDRB —< (=

e Defines
whether

AA A
LA A J

this is an ~

Pxn & = Q & & o Dl

input or an L
output

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

PORTB

 Defines the
value that
IS written _
out to the
pin (If It IS
an output)

11— (= l

JA

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

Tristate buffer —< (= l

 When this
pin is an
output pin, It

allows the [1 -
PORTB flip- gl T
flop to drive

DATA BUS

L
the pin e

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

A

Input tri-state =< == |

buffer

_|— WDx

Pxn

RRx

DATA BUS

RPx

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

Last Time

 Memory behavior
e Microprocessor components

e Manipulating the state of pins
— Registers: DDRx, PORTX, and PINX

Andrew H. Fagg: Embedded Real- 132
Time Systems: Microcontrollers

Today

Homework 1 solution set has been posted
Connecting C code to the I/O pins
Bit Masking

Getting into the hardware
— Compiling and downloading code

On Thursday: come ready with winavr and
AVRstudio installed on your laptops

Andrew H. Fagg: Embedded Real- 133
Time Systems: Microcontrollers

/O Pin Implementation

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

DDRB

/O Pin Implementation

0

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

DDRB =

e “0” Is written to
the data bus

0

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
L
PORTX
& . rd! > PN o D
\l PORTxn ‘
T, 4
| _|— WPx
RESET
N
|
PINX ——— e
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

0

DATA BUS

/O Pin Implementation 0

DDRB = 0: [=1

AA A
LA A J

e “0” Is written to
the data bus

* This is input to '
the DDRB regqister

%
[
&
Z\
L.
®
@
o
=]

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DDRB =

e “0” Is written to
the data bus
 This is input to
the DDRB regqister
« WDB is clocked
from high to low

0

AA A
LA A J

Bll|

(==

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

/O Pin Implementation

DDRB = O;

e “0” Is written to the

AA A
LA A J

Bll|

(==

l . 0 DDRX

data bus

 This is input to the
DDRB register

* WDB is clocked from
high to low

» “0” is stored by the
flip-flop

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

/O Pin Implementation 0

DDRB = O; =i | .0 porx

:E r RDx
* “0” Is written to the data 0 v @
bus o} ——a— < ¢ g <
e This is input to the 2§ E
DDRB register RESET
« WDB is clocked from N
high to low P
« “0” is stored by flip-flop PINX O
» Which turns off the tri- L

state buffer

clk o

-> this is an input pin

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

< (= l -

0 DDRX
Q D 4'

DDRB = 1;

DDxn

T, 4
| _|— WDx

RESET

AA A
LA A J

e “1” Is written to the
data bus

A=
@)
A
_|
X

2
DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation

DDRB = 1;

e “1” Is written to the

AA A
LA A J

Bll|

(==

l . 1 DDRX

Bl

data bus

 This is input to the
DDRB register
 WDB is clocked from
high to low

» “1” is stored by flip-flop
* Which turns on the tri-
state buffer

-> this is an output pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

1

DATA BUS

PORTB

/O Pin Implementation

A

:1;

Pxn

1 (=
l 1 DDRX
& a D <
DDxn
GU.H <
| _|_ WDx
RESET
>
3 N S
1 -
PORTX
4'4 o D
¢ t \l ¢ 1 1 PORTxn ‘
T, 4
| _|— WPx
RESET
N
L~
PINX ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation 1

PORTB = 1: [=1

AA A
LA A J

e “1” Is written to the
data bus

 This is input to the
PORTB register

A ym

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

PORTB = 1: [=1

AA A
LA A J

A ym

* “1” is written to the | .
data bus - 1
 This is input to the
PORTB register
 WPB is clocked from
high to low PINX
» “1” is stored by flip-flop

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation 1

PORTB =

e “1” Is written to the

1;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “1” is stored by flip-flop

* Which provides a “1”
the tri-state buffer

-> output a “1”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— 1 <J & ® 4 <
1 1 2
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation 0

PORTB =

e “0” Is written to the
data bus

AA A
LA A J

Bll|

(==

A ym

o)
B
< o
o> 1 “J o \ 4 = ﬂ:
1 1, 5
a
RESET
PINX T
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

/O Pin Implementation 0

PORTB =

e “0" Is written to the

O;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “0” is stored by flip-flop

* Which provides a “0”
the tri-state buffer

-> output a “0”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— O <J & ® 4 <
0 ol =
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

foo

/O Pin Implementation

PORTB;

A

AA A
LA A J

PUD

Bll|

(==

l 1 DDRXx
& QD leg

A ym

DDxn

T, 4
| _|— WDx

RESET

Pxn

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS

/O Pin Implementation

foo = PORTB: [=1

AA A
LA A J

. . 1 3

* RPB is set high — | = | - o
\l PORTxn ﬂ:

0 0 0= - %

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

foo = PORTB: [=1

AA A
LA A J

o)

 RPB is clocked from— | ,J{ | . @
. o~ <
high to low 0 0 =
« “0” is written to the 3

data bus

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DDRB = O;

* “0” Is written to the data
t)LJS; Pxn

AA A
LA A J

Bll|

(==

 This is input to the
DDRB register

 WDB is clocked from
high to low

» “0” is stored by flip-flop
e Which turns off the tri-
state buffer

-> this is an input pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS

foo

/O Pin Implementation

A

PINB;

Pxn

11— (=
l 0 DDRX
& a D <
DDxn
Gu.n <
| _|_ WDx
RESET
>
E: h RDx
0 -
L PORTX
< a D
¢ \IO ¢ 1 O PORTxn ‘
UU.H <
| _|— WPx
RESET
N
L~
PINX ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

/O Pin Implementation

foo = PINB: [=1

AA A
LA A J

o)

* RPB is set high - | JQ. | L 3
N PORTxn {

O O O, 4 g

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN

/O Pin Implementation

DATA BUS

:“ <l| (} PUD
foo = PINB; | O porex
b & 0 D |g
T, %
| _|—WDX
RESET
< RDx
3 N —
O L
* RPB is clocked from—)5 | e ORTX
- \l PORTxn
high to low 0 Ol <
e The pin state is e L we
copied to the data bus g
L
PINX Px
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

Bit Manipulation

PORTB Is a register

« Controls the value that is output by the set
of port B pins

e But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded Real- 156
Time Systems: Microcontrollers

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded Real- 157
Time Systems: Microcontrollers

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded Real- 158
Time Systems: Microcontrollers

Bit-Wise Operators

01011110 A

10011011 B

? C=A&B

Andrew H. Fagg: Embedded Real- 159
Time Systems: Microcontrollers

Bit-Wise Operators

0101111

1001101

ol A

\]_./ B

C=A&B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

160

Bit-Wise Operators

0101111/(;\ A

1001101

\1/ B

v
0 C=A&B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

161

Bit-Wise Operators

010111ﬁb A

100110

il B

y
f

0 C=A&B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

162

Bit-Wise Operators

01011110 A

10011011 B

00011010 C=A&B

Andrew H. Fagg: Embedded Real- 163
Time Systems: Microcontrollers

Bit-Wise Operators

Other Operators:
e OR: |

e XOR: A

e NOT: ~

Andrew H. Fagg: Embedded Real- 164
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

Andrew H. Fagg: Embedded Real- 165
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A 4:

Andrew H. Fagg: Embedded Real- 166
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 07

Andrew H. Fagg: Embedded Real- 167
Time Systems: Microcontrollers

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A = A & OxXFB;

or

A=A & ~4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

168

/O Pin Implementation

Single bit of
PORT B

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS

A First
Program

Flash the
LEDs at a
regular
Interval

e How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC1
PC2

PCh PCH GIND

PC4

PDO
PC6 PDI

PD2
PD3

VCC

PCO AREF PB5
) Atmel Mega8

PD4 GND PB7

AVCC PB4 PB2
PB3 PBI

PD6 PBO
PD5 PD7

PBO6

L L L L
[2 3 45 6 7

Andrew H.

~ o~

Time Systems: Microcontrollers

L L LT L

HENREREEN

1L
9 10 1T 12 13 14

200 ohm

A First
Program

How do we
flash the LED
at a regular
Interval?

* We toggle the

state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 77 8 9 10 11 12 13 14
LT
YW * ¥
* W
+5V 200 ohm
Andrew H. o

~ o~

Time Systems: Microcontrollers

A First Program

main() {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec
+

Andrew H. Fagg: Embedded Real- 172
Time Systems: Microcontrollers

A Second Program

main() {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec

PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);
PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);

What does this program do?

Andrew H. Fagg: Embedded Real- 173
Time Systems: Microcontrollers

A Second Program

main() {

DDRB = OxFF; // Set all port B pins as outputs

while(l) {

PORTB = PORTB ™ 0Ox1;

delay ms(500);

PORTB = PORTB ™ 0x2;

delay ms(250);

PORTB = PORTB ™ Ox2;

delay ms(250);

// XOR bit O with 1
// Pause for 500 msec
// XOR bit 1 with 1

// XOR bit 1 with 1

Flashes LED on PB1 at 1 Hz
on PBO: 0.5 Hz

Andrew H. Fagg: Embedded Real- 174
Time Systems: Microcontrollers

Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional | Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

1/5

Last Time(s)

e Bit manipulation: pin hardware to code
* Bit masking
* Project 1

Andrew H. Fagg: Embedded Real- 181
Time Systems: Microcontrollers

Today

A bit more on bit masking
Homework 1 discussion
Serial communication

Project 1 due in one week

Andrew H. Fagg: Embedded Real- 182
Time Systems: Microcontrollers

More Bit Masking

e Suppose we have a 3-bit number (so
values 0 ... 7)

e Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

 How do we express this in code?

Andrew H. Fagg: Embedded Real- 183
Time Systems: Microcontrollers

Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = command_to_ robot; // A value between 0 and 7
PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os

| ((val & 0Ox7)<<3); // OR with new values (shifted
// to fit within B3-B5

Andrew H. Fagg: Embedded Real- 184
Time Systems: Microcontrollers

Bit Masking

mainQ—¢
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short is 8-bits wide

val = command _to robot; // A value between 0 and 7

PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os
| ((val \& 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5)

}
B3-B7 are outputs; all others are still inputs (could

be different depending on how other pins are used)

Andrew H. Fagg: Embedded Real- 185
Time Systems: Microcontrollers

Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = command_to robot; // A value between 0 and 7

// Set the current B3-B5 to Os
<3); // OR with new values (shifted
// to fit within B3-B5

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Andrew H. Fagg: Embedded Real- 186
Time Systems: Microcontrollers

Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = command_to robot; // A value between 0 and 7

PORTB = // Set the current B3-B5 to Os
((val & 0x7))<<3); // OR with new values (shifted

/ // to fit within B3-B5

Substitute an arbitrary value into these
bits

Andrew H. Fagg: Embedded Real- 187
Time Systems: Microcontrollers

Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = command_to robot; // A value between 0 and 7

PORTB =/J(PORTB & 0OxC7) // Set the current B3-B5 to Os

val & 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5

And use the result to change the output
state of port B

Andrew H. Fagg: Embedded Real- 188
Time Systems: Microcontrollers

}

Reading the Digital State of Pins

Given: we want to read the state of PB6 and

OW C
OW C

OW C

PB7 and obtain avalue of 0 ... 3

0 we configure the port?
0 we read the pins?
o0 we translate their values into an

integer of 0 .. 37

Andrew H. Fagg: Embedded Real- 189
Time Systems: Microcontrollers

Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide
val = PINB;

outval = (val & 0xC0O) >> 6;
+

Andrew H. Fagg: Embedded Real- 190
Time Systems: Microcontrollers

Reading the Digital State of Pins

mainQ—¢
<§E§E = 0x38; // Set pins B3, B4, B5 as outputs
// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned shport val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & 0xC0O) >> 6;
+

B6 and B7 are configured as inputs

Andrew H. Fagg: Embedded Real- 191
Time Systems: Microcontrollers

Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

@ = PINB;

outval = I & OxCO) >> 6;

}
Read the value from the port

Andrew H. Fagg: Embedded Real- 192
Time Systems: Microcontrollers

Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval =((val & 0xC0)J)>> 6;
ks

“*Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded Real- 193
Time Systems: Microcontrollers

Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & OxC
¥

Right shift the result by 6 bits — so the value of B6
and B7 are now Iin bits 0 and 1 of “outval”

Andrew H. Fagg: Embedded Real- 194
Time Systems: Microcontrollers

A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O = O; // Set bit 0 to O

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OXFE;

or

PORTA &= ~1;

or

PORTA = PORTA & ~1;

Andrew H. Fagg’: Embedded Real- 195
Time Systems: Microcontrollers

Andrew H. Fagg: Embedded Real- 196
Time Systems: Microcontrollers

Putting It All Together

 Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

 Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
It from your circuit

Andrew H. Fagg: Embedded Real- 197
Time Systems: Microcontrollers

Compiling and Downloading Code

« \WWe will work through the detalls on
Thursday. Before then:

— See the Atmel HowTo (pointer from the
schedule page)

— Windoze: Install AVR Studio and WINAVR

— OS X: Install OSX-AVR
« We will use ‘make’ for compiling and downloading

— Linux: Install binutils, avr-gcc, avr-libc, and
avrdude

e Same as OS X

Andrew H. Fagg: Embedded Real- 198
Time Systems: Microcontrollers

