
Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

1

Components of a Microprocessor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

2

Components of a Microprocessor

• Memory:
– Storage of data
– Storage of a program

• Registers: small, fast memories
– General purpose: store arbitrary data
– Special purpose: used to control the

processor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

3

Special Purpose Registers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

4

Components of a Microprocessor

• Instruction decoder:
– Translates current program instruction into a

set of control signals
• Arithmetic logical unit:

– Performs both arithmetic and logical
operations on data

• Input/output control modules

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

5

Components of a Microprocessor

• Many of these components must
exchange data with one-another

• It is common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

6

Buses
• In the simplest form, it is a single wire
• Many different components can be

attached to the bus
• Any component can take input from the

bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

7

Buses

• At most one component may write to the
bus at any one time

• Which component is allowed to write is
usually determined by the instruction
decoder (in the microprocessor case)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

8

Collections of Bits

• 8 bits: a “byte”
• 4 bits: a “nybble”

• “words”: can be 8, 16, or 32 bits
(depending on the processor)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

9

Collections of Bits

• A data bus typically captures a set of bits
simultaneously

• So: one wire for each of these bits
• In the Atmel Mega8: the data bus is 8-bits

“wide”
• In your home machines: 32 or 64 bits

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

10

Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

14

A Memory Abstraction

• We think of memory as an array of
elements – each with its own address

• Each element contains a value
– It is most common for the values to by 8-bits

wide (so a byte)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

15

A Memory Abstraction

• We think of memory as an array of
elements – each with its own address

• Each element contains a value
– It is most common for the values to by 8-bits

wide (so a byte)

Address

Stored value

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

16

Memory Operations

Read
foo(A+5);

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.
The result is passed to a function called
foo();

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

17

Memory Operations

Write
A = 5;

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

18

Types of Memory

Random Access Memory (RAM)
• Computer can change state of this

memory at any time
• Once power is lost, we lose the contents

of the memory

• This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

19

Types of Memory

Read Only Memory (ROM)
• Computer cannot arbitrarily change state

of this memory
• When power is lost, the contents are

maintained

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

20

Types of Memory

Erasable/Programmable ROM (EPROM)
• State can be changed under very specific

conditions (usually not when connected to
a computer)

• Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

21

Last Time

• Flip-flops as 1-bit storage devices
• Microprocessor components

– Random access memory
– Program memory
– Instruction decoder
– Arithmetic logical unit

• Binary and hexadecimal number systems

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

22

Today

• Memory behavior
• Atmel mega8 microcontroller
• Assembly language (just a hint)
• Digital I/O with the Atmel mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

23

Administrivia

• Homework 2 is out
– Due on February 14th (one week)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

24

Example: A Read/Write
Memory Module

Inputs:
• 2 Address bits: A0 and A1
• 1 “chip select” (CS) bit
• 1 read/write bit (1 = read; 0 = write)
• 1 clock signal (CLK)

Input or Output:
• Data bit (connected to the “data bus”)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

25

A Read/Write Memory Module

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

26

A Read/Write Memory Module

Inputs

Inputs or
outputs

Our
example:

• M=2
• N=1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

27

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

How could we implement each memory
element?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

28

Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

• 4 1-bit elements

How could we implement each memory
element?

• With a D flip-flop
– (more about this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

29

Memory Module Specification

“chip select” signal:
• Allows us to have multiple devices (e.g.,

memory modules) that can write to the bus
• But: only one device will ever be selected

at one time

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

30

Memory Module Specification

When chip select is low:
• No memory elements change state
• The memory does not drive the data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

31

Memory Module Specification

When chip select is high:
• If R/W is high:

– Drive the data bus with the value that is
stored in the element specified by A1, A0

• If R/W is low:
– Store the value that is on the data bus in the

element specified by A1, A0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

32

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

33

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Data bus not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

34

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Memory element 2 is
initially in a high state

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

35

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

36

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Chip is selected

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

37

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Address memory
element 2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

38

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Specify a write operation

Data bus is driven low
(by another device)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

39

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D
Clock goes low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

40

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Memory element 2
changes state to low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

41

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Setup time: all
inputs must be valid
during this time

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

42

Memory Timing Diagram

Q2

A1

A0

R/W

CS

CLK

D

Hold time: all inputs
must continue to be
valid

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

43

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

44

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D Data bus is not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

45

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

46

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

On chip select –
drive data bus from
Q2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

47

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

What happens
now?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

48

Memory Timing Diagram II

Q2

A1

A0

R/W

CS

CLK

D

Data bus
returns to a
non-driven
state

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

49

Memory Summary

• Many independent storage elements
• Elements are typically organized into 8-bit

bytes
• Each byte has its own address
• The value of each byte can be read
• In RAM: the value can also be changed

quickly

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

54

An Example: the Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

55

Atmel Mega8

8-bit data bus
• Primary

mechanism
for data
exchange

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

56

32 general
purpose
registers

• 8 bits wide
• 3 pairs of

registers can
be combined
to give us 16
bit registers

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

57

Special
purpose
registers

• Control of the
internals of
the
processor

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

58

Random Access
Memory (RAM)

• 1 KByte in size

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

59

Random Access
Memory (RAM)

• 1 KByte in size

Note: in high-end
processors,
RAM is a
separate
component

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

60

Flash (EEPROM)
• Program

storage
• 8 KByte in size

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

61

Flash (EEPROM)
• In this and many

microcontrollers,
program and
data storage is
separate

• Not the case in
our general
purpose
computers

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

62

EEPROM
• Permanent

data storage

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

63

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

68

Machine-Level Programs

Machine-level programs are stored as
sequences of atomic machine instructions

• Stored in program memory
• Execution is generally sequential

(instructions are executed in order)
• But – with occasional “jumps” to other

locations in memory

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

69

Types of Instructions

• Memory operations: transfer data values
between memory and the internal registers

• Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

• Tests: value == 0, value > 0, etc.
• Program flow: jump to a new location,

jump conditionally (e.g., if the last test was
true)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

70

Program
counter

• Address of
currently
executing
instruction

Atmel Mega8: Decoding Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

71

Instruction
register

• Stores the
machine-level
instruction
currently being
executed

Atmel Mega8: Decoding Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

72

Instruction
decoder

• Translates
current
instruction into
control signals
for the rest of
the processor

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

73

Status register
• Many machine

instructions
affect the state
of this register

Atmel Mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

81

Some Mega8 Memory Operations

LDS Rd, k
• Load SRAM memory location k into

register Rd
• Rd <- (k)

STS Rd, k
• Store value of Rd into SRAM location k
• (k) <- Rd

We refer to this as
“Assembly Language”

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

82

Load SRAM Value to Register

LDS Rd, k

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

83

Store Register Value to SRAM

STS Rd, k

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

85

Some Mega8 Arithmetic and
Logical Instructions

ADD Rd, Rr
• Rd and Rr are registers
• Operation: Rd <- Rd + Rr
• Also affects status register (zero, carry,

etc.)

ADC Rd, Rr
• Add with carry
• Rd <- Rd + Rr + C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

86

Add Two Register Values

ADD Rd, Rr
• Fetch register

values

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

87

Add Two Register Values

ADD Rd, Rr
• Fetch register

values
• ALU performs

ADD

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

88

Add Two Register Values

ADD Rd, Rr
• Fetch register

values
• ALU performs

ADD
• Result is

written back to
register via the
data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

89

Some Mega8 Arithmetic and
Logical Instructions

NEG Rd: take the two’s complement of Rd
AND Rd, Rr: bit-wise AND with a register
ANDI Rd, K: bit-wise AND with a constant
EOR Rd, Rr: bit-wise XOR
INC Rd: increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rd: multiply (signed)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

90

Some Mega8 Test Instructions

CP Rd, Rr
• Compare Rd with Rr
• Alters the status register

TST Rd
• Test for zero or minus
• Alters the status register

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

91

Modify the
status
register

Some Mega8 Test Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

92

Some Program Flow Instructions

RJMP k
• Change the program counter by k+1
• PC <- PC + k + 1

BRCS k
• Branch if carry set
• If C==1 then PC <- PC + k + 1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

93

Results in a
change to
the program
counter

• May be
conditioned
on the status
register

Atmel Mega8: Decoding Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

98

Connecting Assembly Language to C

• Our C compiler is responsible for
translating our code into Assembly
Language

• Today, we rarely program in Assembly
Language
– Embedded systems are a common exception
– Also: it is useful in some cases to view the

assembly code generated by the compiler

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

99

An Example

A C code snippet:

if(B < A) {
D += A;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

100

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

101

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location A into register 1

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

102

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location B into register 2

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

103

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Compare the contents of register
2 with those of register 1

This results in a change to the
status register

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

104

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

105

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Branch if greater than or equal to
will jump ahead 3 instructions if
true

if true

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

106

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Not true: execute the next
instruction

if not true PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

107

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Load the contents of memory
location D into register 3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

108

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Add the values in
registers 1 and 3 and
store the result in
register 3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

109

An Example

A C code snippet:

if(B < A) {
D += A;

}

The Assembly :
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
……..

Store the value in register
3 back to memory
location D PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

110

Summary
Instructions are the “atomic” actions that are taken

by the processor
• One line of C code typically translates to a

sequence of several instructions
• In the mega 8, most instructions are executed in

a single clock cycle

The high-level view is important here: don’t worry
about the details of specific instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

117

Atmel Mega8 Basics

• Complete, stand-
alone computer

• Ours is a 28-pin
package

• Most pins:
– Are used for

input/output
– How they are used

is configurable

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

118

Atmel Mega8 Basics

Power (we will use
+5V)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

119

Atmel Mega8 Basics

Ground

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

120

Atmel Mega8 Basics

Reset
• Bring low to reset

the processor
• In general, we will

tie this pin to high
through a pull-up
resistor (10K ohm)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

121

Atmel Mega8 Basics

PORT B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

122

Atmel Mega8 Basics

PORT C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

123

Atmel Mega8 Basics

PORT D
(all 8 bits are

available)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

124

A First
Circuit

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

125

Atmel Mega8

Control the pins
through the
I/O modules

• At the heart,
these are
registers …
that are
implemented
using D flip-
flops!

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

126

I/O Pin Implementation

Single bit of
PORT B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

127

I/O Pin Implementation

The physical
pin

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

128

I/O Pin Implementation

DDRB
• Defines

whether
this is an
input or an
output

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

129

I/O Pin Implementation

PORTB
• Defines the

value that
is written
out to the
pin (if it is
an output)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

130

I/O Pin Implementation

Tristate buffer
• When this

pin is an
output pin, it
allows the
PORTB flip-
flop to drive
the pin

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

131

I/O Pin Implementation

Input tri-state
buffer

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

132

Last Time

• Memory behavior
• Microprocessor components
• Manipulating the state of pins

– Registers: DDRx, PORTx, and PINx

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

133

Today

• Homework 1 solution set has been posted
• Connecting C code to the I/O pins
• Bit Masking
• Getting into the hardware

– Compiling and downloading code

• On Thursday: come ready with winavr and
AVRstudio installed on your laptops

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

134

I/O Pin Implementation

DDRx

PORTx

PINx

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

135

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

136

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

137

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus
• This is input to
the DDRB register

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

138

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to
the data bus
• This is input to
the DDRB register
• WDB is clocked
from high to low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

139

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the
data bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by the
flip-flop

0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

140

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the data
bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by flip-flop
• Which turns off the tri-
state buffer

-> this is an input pin

0

0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

141

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 1;

1

• “1” is written to the
data bus

0

0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

142

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 1;

1

• “1” is written to the
data bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “1” is stored by flip-flop
• Which turns on the tri-
state buffer

-> this is an output pin

1

1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

143

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

•

1

1
1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

144

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register

1

1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

145

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “1” is stored by flip-flop

1

1
1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

146

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 1;

1

• “1” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “1” is stored by flip-flop
• Which provides a “1” to
the tri-state buffer

-> output a “1”

1

1
111

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

147

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 0;

0

• “0” is written to the
data bus

1

1
111

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

148

I/O Pin Implementation

DDRx

PORTx

PINx

PORTB = 0;

0

• “0” is written to the
data bus
• This is input to the
PORTB register
• WPB is clocked from
high to low
• “0” is stored by flip-flop
• Which provides a “0” to
the tri-state buffer

-> output a “0”

1

1
000

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

149

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB; 1

1
000

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

150

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB;

• RPB is set high

1

1
000

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

151

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PORTB;

• RPB is clocked from
high to low
• “0” is written to the
data bus

1

1
000

0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

152

I/O Pin Implementation

DDRx

PORTx

PINx

DDRB = 0;

0

• “0” is written to the data
bus
• This is input to the
DDRB register
• WDB is clocked from
high to low
• “0” is stored by flip-flop
• Which turns off the tri-
state buffer

-> this is an input pin

0

0
00

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

153

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB; 0

0
00

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

154

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB;

• RPB is set high

0

0
00

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

155

I/O Pin Implementation

DDRx

PORTx

PINx

foo = PINB;

• RPB is clocked from
high to low
• The pin state is
copied to the data bus

0

0
00

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

156

Bit Manipulation

PORTB is a register
• Controls the value that is output by the set

of port B pins
• But – all of the pins are controlled by this

single register (which is 8 bits wide)

• In code, we need to be able to manipulate
the pins individually

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

157

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

158

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

159

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

160

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

161

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

162

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

163

Bit-Wise Operators

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

164

Bit-Wise Operators

Other Operators:
• OR: |
• XOR: ^
• NOT: ~

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

165

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

166

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 1?

A = A | 4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

167

Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 0?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

168

Bit Manipulation
Given a byte A, how do we set bit 2

(counting from 0) of A to 1?

A = A & 0xFB;

or

A = A & ~4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

169

I/O Pin Implementation

DDRx

PORTx

PINx

Single bit of
PORT B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

170

A First
Program

Flash the
LEDs at a
regular
interval

• How do we
do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

171

A First
Program

How do we
flash the LED
at a regular
interval?

• We toggle the
state of PB0

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

172

A First Program
main() {

DDRB = 7; // Set port B pins 0, 1, and 2 as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
}

}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

173

A Second Program
main() {

DDRB = 7; // Set port B pins 0, 1, and 2 as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

What does this program do?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

174

A Second Program
main() {

DDRB = 0xFF; // Set all port B pins as outputs

while(1) {
PORTB = PORTB ^ 0x1; // XOR bit 0 with 1
delay_ms(500); // Pause for 500 msec
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);
PORTB = PORTB ^ 0x2; // XOR bit 1 with 1
delay_ms(250);

}
}

Flashes LED on PB1 at 1 Hz
on PB0: 0.5 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

175

Port-Related Registers

The set of C-accessible register for controlling
digital I/O:

PINDPORTDDDRDPort D

PINCPORTCDDRCPort C

PINBPORTBDDRBPort B

ReadingWritingDirectional
control

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

181

Last Time(s)

• Bit manipulation: pin hardware to code
• Bit masking
• Project 1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

182

Today

• A bit more on bit masking
• Homework 1 discussion
• Serial communication

• Project 1 due in one week

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

183

More Bit Masking

• Suppose we have a 3-bit number (so
values 0 … 7)

• Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

• How do we express this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

184

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7)<<3); // OR with new values (shifted

// to fit within B3-B5
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

185

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5)
}

B3-B7 are outputs; all others are still inputs (could
be different depending on how other pins are used)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

186

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

“Mask out” the current values of pins B3-
B5 (leave everything else intact)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

187

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

Substitute an arbitrary value into these
bits

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

188

Bit Masking
main() {

DDRB = 0xF8; // Set pins B3, B4, B5, B6, B7 as outputs

:
:

unsigned short val; // A short is 8-bits wide

val = command_to_robot; // A value between 0 and 7

PORTB = (PORTB & 0xC7) // Set the current B3-B5 to 0s
| ((val & 0x7))<<3); // OR with new values (shifted

// to fit within B3-B5
}

And use the result to change the output
state of port B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

189

Reading the Digital State of Pins

Given: we want to read the state of PB6 and
PB7 and obtain a value of 0 … 3

• How do we configure the port?
• How do we read the pins?
• How do we translate their values into an

integer of 0 .. 3?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

190

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

191

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

B6 and B7 are configured as inputs

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

192

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Read the value from the port

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

193

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

“Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

194

Reading the Digital State of Pins
main() {

DDRB = 0x38; // Set pins B3, B4, B5 as outputs
// All others are inputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

:
:

unsigned short val, outval; // A short is 8-bits wide

val = PINB;

outval = (val & 0xC0) >> 6;
}

Right shift the result by 6 bits – so the value of B6
and B7 are now in bits 0 and 1 of “outval”

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

195

A Note About the C/Atmel Book
The book uses C syntax that looks like this:
PORTA.0 = 0; // Set bit 0 to 0

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= 0xFE;

or
PORTA &= ~1;

or
PORTA = PORTA & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

196

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

197

Putting It All Together
• Program development:

– On your own laptop
– We will use a C “crosscompiler” (avr-gcc and

other tools) to generate code on your laptop
for the mega8 processor

• Program download:
– We will use “in circuit programming”: you will

be able to program the chip without removing
it from your circuit

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

198

Compiling and Downloading Code

• We will work through the details on
Thursday. Before then:
– See the Atmel HowTo (pointer from the

schedule page)
– Windoze: Install AVR Studio and WinAVR
– OS X: Install OSX-AVR

• We will use ‘make’ for compiling and downloading
– Linux: Install binutils, avr-gcc, avr-libc, and

avrdude
• Same as OS X

