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Components of a Microprocessor

« Memory:
— Storage of data
— Storage of a program

* Registers: small, fast memories

— General purpose: store arbitrary data

— Special purpose: used to control the
processor
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Special Purpose Registers
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Components of a Microprocessor

e |nstruction decoder:

— Translates current program instruction into a
set of control signals

 Arithmetic logical unit:

— Performs both arithmetic and logical
operations on data

 Input/output control modules
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Components of a Microprocessor

 Many of these components must
exchange data with one-another

e |t IS common to use a ‘bus’ for this
exchange
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Buses

* In the simplest form, it Is a single wire

 Many different components can be
attached to the bus

e Any component can take input from the
bus

Andrew H. Fagg: Embedded Real-
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Buses

e At most one component may write to the
bus at any one time

* \Which component is allowed to write Is
usually determined by the instruction
decoder (in the microprocessor case)

Andrew H. Fagg: Embedded Real-
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Collections of Bits

e 8 bits: a “byte”
e 4 bits: a “nybble”

e “words”™. can be 8, 16, or 32 hits
(depending on the processor)

Andrew H. Fagg: Embedded Real-
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Collections of Bits

A data bus typically captures a set of bits
simultaneously

So: one wire for each of these bits

In the Atmel Mega8: the data bus is 8-bits
“wide”

In your home machines: 32 or 64 bits

Andrew H. Fagg: Embedded Real-
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Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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A Memory Abstraction

 We think of memory as an array of
elements — each with 1ts own address
e Each element contains a value

— It Is most common for the values to by 8-bits
wide (so a byte)

0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B

o 1 2 3 M_

Andrew H. Fagg: Embedded Real- 14
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A Memory Abstraction

 We think of memory as an array of
elements — each with 1ts own address

e Each element contains a value

— It Is most common for the values to by 8-bits
wide (so a byte)

Stored value

£
0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B
0 1 2 3
K Andrew H. Fagg: Embedded Real- 2'1\/[_151
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Memory Operations

Read
Tfoo(A+5);

reads the value from the memory location
referenced by ‘A’ and adds the value to 5.
The result is passed to a function called
foo();
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Memory Operations

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real- 17
Time Systems: Microcontrollers



Types of Memory

Random Access Memory (RAM)

 Computer can change state of this
memory at any time

e Once power Is lost, we lose the contents
of the memory

e This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
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Types of Memory

Read Only Memory (ROM)

 Computer cannot arbitrarily change state
of this memory

 When power is lost, the contents are
maintained

Andrew H. Fagg: Embedded Real-
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Types of Memory

Erasable/Programmable ROM (EPROM)

e State can be changed under very specific
conditions (usually not when connected to

a computer)

e Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

Andrew H. Fagg: Embedded Real- 20
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Last Time

* Flip-flops as 1-bit storage devices

° Microprocessor components
— Random access memory
— Program memory
— Instruction decoder
— Arithmetic logical unit

e Binary and hexadecimal number systems

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Today

Memory behavior

Atmel mega8 microcontroller
Assembly language (just a hint)
Digital 1/0 with the Atmel mega8

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Administrivia

e Homework 2 is out
— Due on February 14t (one week)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Example: A Read/Write
Memory Module

Inputs:

2 Address bits: A0 and Al

1 “chip select” (CS) bit

1 read/write bit (1 = read; 0 = write)
1 clock signal (CLK)

Input or Output:
» Data bit (connected to the “data bus”)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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A Read/Write Memory Module

/ Address Data L
M Bus Bus N
CS
R/W
CLK

Andrew H. Fagg: Embedded Real-
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A Read/Write Memory Module

Address Data
Bus Bus
CS

R/W

CLK

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Z

rd

N
Inputs or
outputs

Our
example:

e M=2
e N=1
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Implementing A Read/Write
Memory Module

With 2 address bits, how many memory
elements can we address?

How could we implement each memory
element?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Implementing A Read/Write
Memory Module
With 2 address bits, how many memory
elements can we address?
e 4 1-bit elements

How could we implement each memory
element?

o With a D flip-flop
— (more about this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Module Specification

“chip select” signal:

* Allows us to have multiple devices (e.g.,
memory modules) that can write to the bus

e But: only one device will ever be selected
at one time

Andrew H. Fagg: Embedded Real- 29
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Memory Module Specification

When chip select is low:
« No memory elements change state
 The memory does not drive the data bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Module Specification

When chip select is high:

. If R/W is high:

— Drive the data bus with the value that Is
stored In the element specified by Al, AO

e If R/W is low:

— Store the value that is on the data bus In the
element specified by Al, AO

Andrew H. Fagg: Embedded Real- 31
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Memory Timing Diagram

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

AN Data bus not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

@
AL/ \
AO _

Memory element 2 Is

W T\ initially in a high state
cs __/

CLK. AN

D N

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

Q2

AL/

AO

R/vv:—\_/ Chip Is selected
cs K D

CLK. N

D N

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

36



Memory Timing Diagram

Address memory

. element 2
R'W

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

Q2
AL/
AO
R,W:—Q — Specify a write operation
cs /
: . .
CLK. ——  Data bus is driven low
D :—@ — (by another device)

Andrew H. Fagg: Embedded Real- 38
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Memory Timing Diagram

<)L
Q)——clock goes low

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram

Q2 \
N 4 Memory element 2

. changes state to low

A0

Andrew H. Fagg: Embedded Real- 40
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Memory Timing Diagram

Q2 B
AL/ 1 |

] P Setup time: all
AD inputs must be valid
RIW NI during this time
cs /o
CLK \
e I e

! ! Andrew H. Fagg: Embedded Real- 41
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Memory Timing Diagram

Q2
AL/

\

P Hold time: all inputs

AO must continue to be
RW. N\t 1 valid

CLK. \

R I I

Andrew H. Fagg: Embedded Real- 42
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Memory Timing Diagram ||

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram ||

Q2

AL/

AO

RW  /

cS . /

CLK.

D Q — Data bus is not driven

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram ||

rRW._ What happens next?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram ||

AO On chip select —
W , drive data bus from

Q2

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram ||

ar What happens
now?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Memory Timing Diagram ||

Q2
AL/
AOD Data bus

] returns to a
RW____/ non-driven
cs / } state
CLK X
D \ S

Andrew H. Fagg: Embedded Real- 48
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Memory Summary

Many independent storage elements

Elements are typically organized into 8-bit
bytes

Each byte has its own address
The value of each byte can be read

In RAM: the value can also be changed
quickly

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

49



Atmel Mega8

Data Bus 8-bit

An Example: the
«

Time Systems: Microcontrollers

Program Status
Flash - Ea
Program Counter and Control
Memory =
l Interrupt
. 32x8 Unit
Instruction General
Register Purpose SP
Registrers v Unit
3
Instruction Watchdo
Decoder y h 4 il Timer °
(=]
] w
8 £ ALU - Analog
Control Lines = pe. Comparator
pa 3
[ o
@ =
= k= 2o
= = ™ i/O Module1
< sﬁiﬂ » /O Module 2
» /O Module n
EEPROM
I/O Lines
Andrew H. Fagg: Embedded Real- 54




Atmel Mega8

8-bit data bu

 Primary
mechanism
for data
exchange

Flash ¥

Program
Memory =

Program
Counter

:

Instruction
Register

Data Bus 8-bit

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Status
and Control
Interrupt
32x8 Unit
General
Purpose SP
Registrers Unit
Watchdog
Timer
Analog
Comparator
IO Module1
i’O Module 2
i/O Module n
EEPROM
I/O Lines
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Data Bus 8-bit

Atmel Mega8
«

:

32 general

Flash
Program
Memory

il

purpose

Instruction
Register

registers

Program
Counter

3

Instruction
Decoder

e 8 bits wide

e 3 pairs of
registers can
be combined
to give us 16
bit registers

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose
Registrers

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n
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Atmel Mega8
«

Special
purpose
registers

Program
Counter

Instruction
Register

Data Bus 8-bit

Status
and Control

Instruction
Decoder

e Control of the
Internals of
the
processor

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Andrew H. Fagg: Embedded Real-
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Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n
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Data Bus 8-bit

Atmel Mega8
«

:

Flash n Fg;ﬁ;g o an? tgi:unirol
Random Access [ & L
;
Memory (RAM) Instruction Gsezn;raal
Register Purpose
Registrers
1 KByte In size ]
3 ALU
Control Lines E
E

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n
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Atmel Mega8
«

Random Access
Memory (RAM)

1 KByte In size

Note: in high-end
Processors,
RAM is a
separate
component

Data Bus 8-bit

:

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Interrupt
Unit

SPI
Unit

Program Status
Flash - Ea
Program Counter and Control
Memory =
l 32x8
Instruction General
Register Purpose
o Registrers
= y ¥
= N
w
3 ALU
5 =
Control Lines Z
T
2
B=
£

1/O Lines i

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n
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Data Bus 8-bit

Atmel Mega8
«

:

Flash (EEPROM

 Program

storage

8 KByte In size

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

Program Status
Flash e
Program Counter and Control
Memory
32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder - F h 4
@ ? ALU
. o T
Control Lines B Z
< =
.- &
[&] O
i) =
) -
a =
Data
SRAM
EEPROM
1/O Lines

Andrew H. Fagg: Embedded Real-
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i/O Module n
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Atmel Mega8

Flash (EEPROM)

* Inthis and many [z
microcontrollers,

program and
data storage Is
separate

 Not the case In
our general
purpose
computers

Data Bus 8-bit

y_

< I

Program Status
Flash e s
Program Counter and Control
Memory
— Interrupt
o Unit
General
Purpose kg SP|
Regist v Unit
¥
Instruct Watchdo
Decod 4 h 4 - Timer )
(=]
] w
o E ALY " Analog
Control Lines i Z Comparator
= 5
[&] O
i) =
= - <o
e £ ™ /0 Module1
sfﬁiﬂ bt /0 Module 2
/O Module n
EEPROM e
1/O Lines e
61
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Atmel Mega8
«

EEPROM

e Permanent
data storage

Data Bus 8-bit

:

Flash
Program
Memory

il

e

Program
Counter

:

Instruction
Register

Status
and Control

3

Instruction
Decoder

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

hvd

ALU

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

Andrew H. Fagg: Embedded Real-
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Data
SRAM

i’O Module1

i’O Module 2

Y

1/O Lines

i/O Module n
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Data Bus 8-bit

Atmel Mega8
«

Arithmetic

Logical Unit
e Data Inputs

from registers

e Control inputs
not shown
(derived from
Instruction
decoder)

Program Status
Flash e P
Program Counter and Control
Memory
l 32x8
Instruction General
Register Purpose =
Registrers
N
Instruction
Decoder
o
l IE Im
w w
@ o
. o T
Control Lines B Z V
< =
.- &
[&] O
i) =
) -
a =
Data
> SRAM -

Andrew H. Fagg: Embedded Real-
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EEPROM i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

i/O Module n

1/O Lines i
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Machine-Level Programs

Machine-level programs are stored as
seguences of atomic machine instructions

e Stored In program memory

e Execution Is generally sequential
(instructions are executed in order)

e But — with occasional “jumps” to other
locations in memory

Andrew H. Fagg: Embedded Real- 68
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Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jJump conditionally (e.qg., if the last test was
true)

Andrew H. Fagg: Embedded Real- 69
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Atmel Mega8: Decoding Instructions

Program
counter

e Address of
currently
executing
Instruction

Data Bus 8-bit

Instruction

Register

Program
Counter

Status
and Control

32x8

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-
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» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines
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Atmel Mega8: Decoding Instructions

«

Instruction
register —™——

e Stores the
machine-level
Instruction
currently being
executed

Data Bus 8-bit

:

Flash
Program
Memory

Program
Counter

N

Instruction
Register

Status
and Control

32x8

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

General
Purpose

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-
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» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines
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Data Bus 8-bit

Atmel Mega8
«

:

Instruction By e et
decoder l -

» Translates | 5=
current | |\~ i
instruction into
control signals 1o
for the rest of -
the processor

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

Andrew H. Fagg: Embedded Real-
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i’O Module1

i’O Module 2

Y

i/O Module n
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Atmel Mega8
«

Status register

 Many machine

Instructions

Data Bus 8-bit

:

Flash ¥

Program
Memo

Instruction
Register

Program
Counter

Status
and Control

3

Instruction
Decoder

affect the state .
of this register

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

ALU

Andrew H. Fagg: Embedded Real-
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Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n

73




Some Mega8 Memory Operations

We refer to this as

LDS Rd, k4/ “Assembly Language”

 Load SRAM memory location k into
register Rd

e Rd <- (k)

STS Rd, k
e Store value of Rd into SRAM location k

e (k) <-Rd

Andrew H. Fagg: Embedded Real- 81
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Load SRAM Value to Register

LDS Rd, k

Data Bus 8-bit

< I

Program Status
Flash - e
Program Counter and Control
Memory -
- 32x8
Instruction General
Register Purpose
< Registrers
¥
Instruction
Decoder -
(=] =
l = 5
w w
@ b
) o =
Control Lines =z Z
<< =
-— O
[&] @O
1] =
=, =
(] =

Andrew H. Fagg: Embedded Real-
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SRAM

EEPROM i

/O Lines e

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n
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Store Register Val
«

STS Rd, k

Data Bus 8-bit

:

Program Status
Flash - e
Program Counter and Control
Memory -
- 32x8
Instruction General
Register Purpose
< Registrers
¥
Instruction
Decoder -
(=] =
l = 5
w w
@ b
) o =
Control Lines =z Z
<< =
-— O
[&] @O
1] =
=, =
(] =

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

SRAM

EEPROM i

/O Lines e

ue to SRAM

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n
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Some Mega8 Arithmetic and

Logical Instructions
ADD Rd, Rr
 Rd and Rr are registers
e Operation: Rd <- Rd + Rr

* Also affects status register (zero, carry,
etc.)

ADC Rd, Rr
e Add with carry
e Rd<-Rd+Rr+C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Add Two Register

ADD Rd, Rr

e Fetch register
values

Values

Data Bus 8-bit

< I

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

Program Status
Flash - e
Program Counter and Control
Memory -
» 32x8
Instruction General
Register Purpose
Registrers
, I I
Instruction
Decoder -
(=] =
l £ 5
w w
@ b
) o =
Control Lines =z Z
< P
-— O
[&] @O
1] =
=, =
(] =
Data
> SRAM
EEPROM
/O Lines

Andrew H. Fagg: Embedded Real-
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Add Two Register Values

Data Bus 8-bit

«

ADD Rd, Rr

e Fetch register
values

e ALU performs
ADD

:

Flash
Program
Memory

Program
Counter

F 3

Instruction
Register

Status
and Control

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

I Registrers I

32x8
General
Purpose

Andrew H. Fagg: Embedded Real-
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Data
SRAM

EEPROM i

/O Lines e

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i’O Module1

i’O Module 2

ilO Module n
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Data Bus 8-bit

Add Two Register Values
«

Program Status
Flash - wl po—i
Program Counter and Control
y r Memory o}
Interrupt
. —t > 632:(8! Unit
nstruction eneral
e Fetch reqister
+ Registrers Unit
, —
Va ueS Instruction Watchdog
Decoder i Timer
(=] =
l IE Im
7] w
@ z Analog
o
 ALU performs ..l I compart
- 3
(%] O
@ =
= = [
/ \DD = = 1 /O Module1

o Result IS - sﬁin ] /0 Module 2

written back to =
regISter Vla the I/O Lines  [a—m
data bus
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Some Mega8 Arithmetic and
Logical Instructions

NEG Rd: take the two’s complement of Rd

AN
AN
EO

D Rd, Rr: bit-wise AND with a register
Dl Rd, K: bit-wise AND with a constant

R Rd, Rr: bit-wise XOR

INC Rd: increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rd: multiply (signhed)

Andrew H. Fagg: Embedded Real- 89
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Some Mega8 Test Instructions

CP Rd, Rr
« Compare Rd with Rr
 Alters the status register

S

Rd

e Test for zero or minus
o Alters the status register

Andrew H. Fagg: Embedded Real-
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Some Mega8 Test Instructions

Modify the
status
register

«

Flash
Program
Me

Data Bus 8-bit

and Control

Status

Instruction
Register

3

Instruction
Decoder

l

Control Lines

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

hvd

ALU

Andrew H. Fagg: Embedded Real-
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Data

SRAM =

EEPROM i

1/O Lines i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

L

i’O Module1

i’O Module 2

Y

i/O Module n
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Some Program Flow Instructions

RIMP k
 Change the program counter by k+1
« PC<-PC+k+1

BRCS k
 Branch if carry set
e fC==1thenPC<-PC+k+1

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Atmel Mega8: Decoding Instructions

Results in a
change to
the program
counter

 May be
conditioned
on the status
register

Data Bus 8-bit

Program
Counter

Status
and Control

32x8

Instruction
Register

General
Purpose

3

Instruction
Decoder

l

Control Lines

Direct Addressing
Indirect Addressing

Registrers

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Data

Andrew H. Fagg: Embedded Real-
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» SRAM

i’O Module1

i’O Module 2

EEPROM

i/O Module n

1/O Lines
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Connecting Assembly Language to C

e Our C compiler is responsible for
translating our code into Assembly
Language

e Today, we rarely program in Assembly
Language
— Embedded systems are a common exception

— Also: It Is useful In some cases to view the
assembly code generated by the compiler

Andrew H. Fagg: Embedded Real- 98
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An Example

A C code snippet:

if(B < A) {
D +=A;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

99



An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

(B < A) 1 CP R2, R1

D +=A; BRGE 3

} LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real- 100
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An Example

The Assembly :
A C code snippet: LDS R1 (A) <« PC
LDS R2 (B)
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location A into register 1 STS (D)’ R3

Time Systems: Microcontrollers



An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B) <+— PC
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location B into register 2 STS (D)’ R3

Time Systems: Microcontrollers



An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

if(B < A) { CPR2, Rl < PC
D +=A; BRGE 3

} LDS R3 (D)

Compare the contents of register ADD R3, R1

2 with those of register 1 STS (D), R3

This results in a change tothe  ........
status register Andrew H. Fagg: Embedded Real- 103
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An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2, R1

D+=A;

BRGE3 < PC
} /LDS R3 (D)
ADD R3, R1

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true STS (D), R3

Andrew H. Fagg: Embedded Real- 104
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An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE 3
} / LDS R3 (D)
ADD R3, R1

If true
Branch if greater than or equal to
will jump ahead 3 instructions if STS (D), R3
true
........ <+ PC
Andrew H. Fagg: Embedded Real- 105
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An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A){ CP R2, R1
D += A, | BRGE 3
} If not true | DS R3 (D) <« PC
Not true: execute the next ADDR3, R1
Instruction STS (D), R3

Time Systems: Microcontrollers



An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A) { CP R2, R1
D +=A; BRGE 3
} LDS R3 (D) <+ PC
/ ADD R3, R1
Load the contents of memory
location D into register 3 STS (D), R3
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An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
Adq the values in «+«—ADD R3, R1 «— PC
e STS (D), R3
register3 L

Time Systems: Microcontrollers



An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
(B <A) { CP R2, R1
D+=A; BRGE 3
} LDS R3 (D)
Store the value in register ADD R3, R1

3 back to memory 4\8 S(D) R3 «— PC

location D

Andrew H. Fagg: Embedded Real- 109
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Summary

Instructions are the “atomic” actions that are taken
by the processor

* One line of C code typically translates to a
sequence of several instructions

* |In the mega 8, most instructions are executed In
a single clock cycle

The high-level view is important here: don’t worry
about the detalls of specific instructions

Andrew H. Fagg: Embedded Real- 110
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Atmel Mega8 Basics

PDIP
 Complete, stand- o
a| one com p uter (RESET) PC6 [] 1 28 [1 PC5 (ADC5/SCL)
(RXD) PDO ] 2 27 [1 PC4 (ADC4/SDA)
° I _Ni (TXD) PD1 3 26 [1 PC3 (ADC3)
Ours Is a 28 pln (INTO) PD2 [ 4 25 [1 PC2 (ADC2)
pac kage (INT1) PD3[]5 24 1 PC1 (ADC1)
(XCK/T0) PD4 [ 6 23 [J PCO (ADCO)
° I . vee 7 22 [1GND
MOSt pInS. GND []8 21 [0 AREF
_ (XTAL1/TOSC1) PB6 ] 9 20 [J AVCC
Are used for (XTAL2/TOSC2) PB7 []10 19 [1 PB5 (SCK)
mput/output (T1) PD5 ] 11 18 [1 PB4 (MISO)
(AINO) PD6 [ 12 17 [1 PB3 (MOSI/OC2)
— How they are used (AIN1) PD7 []13 16 [1 PB2 (SS/OC1B)
IS Conflgurable (ICP1) PBO[] 14 15 0 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
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Atmel Mega8 Basics

PDIP
Power (we will use -
(RESET) PC6 [ 1 28 [1PC5 (ADC5/SCL)
+5V) (RXD) PDO ]2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 3 26 [1PC3 (ADC3)
(INTO) PD2 ] 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADC1)
KIT 6 23 [1 PCO (ADCO)
< VCC L > 22 [ 1GND
8 21 [ 1 AREF
(XTAL1/TOSC1) PB6 ]9 20 J AVCC
(XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK)
(T1) PD5 ] 11 18 [0 PB4 (MISO)
(AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 ] 13 16 [0 PB2 (SS/OC1B)
(ICP1) PBO ] 14 15 [0 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
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Ground

Atmel Mega8 Basics

PDIP
S
(RESET) PC6 [} 1 28 |1 PC5 (ADC5/SCL)
(RXD) PD0 2 27 J PC4 (ADC4/SDA)
(TXD) PD1[]3 26 1 PC3 (ADC3)
INTO) PD2 ] 4 25 |1 PC2 (ADC2)
<) 24 11 PC1 (ADC1)
CK/TO) PDA L 6~ ? (ADCO)
22 1 GND
(GND L 8) 2 EF
(XTAL1/TOSC1) P 9 20 L AVCC
(XTAL2/TOSC2) PB7 ] 10 19 [0 PB5 (SCK)
(T1) PD5 [ 11 18 0 PB4 (MISO)
(AINO) PD6[] 12 17 @ PB3 (MOSI/OC2)
(AIN1) PD7 13 16 [d PB2 (SS/OC1B)
(ICP1) PBO[] 14 15 0 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 119
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Atmel Mega8 Basics

PDIP
Reset _ =
_ CRESET) PCo ] 1 28 [1 PC5 (ADC5/SCL)
e Bring low to reset = “mereeer 27 [1PC4 (ADCA/SDA)
(TXD) PD1 [ 3 26 [1PC3 (ADC3)
the processor (INT0) PD2 ] 4 25 [1PC2 (ADC2)
(INT1) PD3[]5 24 1 PC1 (ADC1)
° I (XCK/TO) PD4 ] 6 23 [0 PCO (ADCO)
In general, we will poage  2pRoo
' I I ' GND[]8 21 [1AREF
tie this pIn to hlgh (XTAL1/TOSC1) PB6 ]9 20 1 AVCC
through a pu”_up (XTAL2/TOSC2) PB7 [ 10 19 [0 PB5 (SCK)
(T1) PD5 ] 11 18 [1 PB4 (MISO)
resistor (1OK Ohm) (AINO) PD6 [] 12 17 [0 PB3 (MOSI/OC2)
(AIN1) PD7 ] 13 16 |1 PB2 (SS/OC1B)
(ICP1) PBO [] 14 151 PB1 (OC1A)
Andrew H. Fagg: Embedded Real- 120
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Atmel Mega8 Basics

PORT B

PDIP
T
(RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL)
(RXD) PDO [] 2 27 [0 PC4 (ADC4/SDA)
(TXD) PD1 []3 26 [1 PC3 (ADC3)
(INTO) PD2 [ 4 25 [0 PC2 (ADC2)
(INT1) PD3[]5 24 [1PC1 (ADCH)
(XCK/TO) PD4 [ 6 23 [0 PCO (ADCO)
vee 7 22 0 GND
GND []8 21 [0 AREF
(XTAL1/TOSC1) PB6 J 20 )4
(XTAL2/TOSC2) PB7 ED Y[ PB5 (SCK)
5] 11 8 [0 PB4 (MISO)
(AINO) PD6 [] 12

(AIN1)
(ICP() PBO [

—rt Y
(98]

1 PB2 (SS/0C1B)

(
(

] PB3 (MOSI/OC2)
(SS.

(] PB1 (

OC1A

Andrew H. Fagg: Embedded Real-
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Atmel Mega8 Basics

PORT C

PDIP

(RESET) PC6

(TXD
(INTO
(INT1

(XCK/TO

PD1 [
PD2
PD3 [
PD4 [
Veloln
GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7 [
(T1) PD5
(AINO) PD6 [
)

)

T T e

(AIN1) PD7 [
(ICP1) PBO [

S

19 1PB5
18 |1 PB4
17 1 PB3
16 |1 PB2
15 |1 PB1

SCK)
MISO)
MOSI/OC2)
(SS/OC1B)
OC1A)

—‘—\a—-a—-ha—-na—-n

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

122



Atmel Mega8 Basics

PORT D

(all 8 bits are
available)

PDIP

(RXD) PDO
(TXD) PD1 [

)
)
(INTO) PD2
)
)

(INT1) PD3 [
K/TO) PD4
C

GND [
(XTAL1/TOSC1) PB6
(XTAL2/TOSC
(T1) PD5 O
(AINO) PD6 [
AIN1) PD7 [

S

28
27
26
25
24
23
22
21
20
19
18
3 74
16
15

1 PC5 (

1 PC4 (

1 PC3 (

1 PC2 (ADCz
1 PC1 (

1 PCO (
1GND

] AREF

1AVCC

1 PB5 (SCK)

[ PB4 (MISO)

1 PB3 (MOSI/OC2)
1 PB2 (SS/OC1B)
1 PB1 (OC1A)

Andrew H. Fagg: Embedded Real-
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A First
Circult

28 27 26 25 24 23 22
ENESESEREEEEE

21 20 19 18 17 16 15
ENEEEEERENEEE

PC5 PC3 PCl
PC4  PC2

) Atmel

PDO PD2 PD4
PC6 PDI PD3

GND AVCC PB4 PB2
PCO AREF PBS

GND PB7
VCC PB6

PB3 PBI
Mega8

PD6 PBO
PD5 PD7

NEENERERERNEN
1 2 3 4 5 6 7

W .

+5V

HpERERERNENEN
8 9 10 11 12 13 14

. MA—
200 ohm

vy

Andrew H. Fagg: Embedded Real-
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Data Bus 8-bit

Atmel Mega8
«

:

Program Status
Counter and Control

Flash ¥

Control the pins e |,

l Interrupt
through the o (I =
nstruction enera
g Register Purpose SPI
+ Registrers e Unit
/O modules ~
Instruction Watchdo
Decoder 4 h 4 - Timer )
e At the heart, '
Comparator

Control Lines

Direct Addressing
Indirect Addressing
[6
&
c
3
F

these are
registers ... 1 me Lk

» SRAM =

{ /O Module1

i’O Module 2

that are ;

i/O Module n

|mp|emented EEPROM  |a—m
using D flip- - 14

ﬂOpSl Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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/O Pin Implementation

A

Single bit of 1< & l

o Tle
PORT B =3

RESET

Ad
VY
u ]
W]
-

/X
L .
.
o
X

Pxn & \ 4

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

A

The physical A=< (= |

OD<

p i n D-D:n<
ET _|— WDx

RESET

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

PUD

DDRB —< (=

e Defines
whether

AA A
LA A J

this is an ~

Pxn & = Q & & o Dl

input or an L
output

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

PORTB

 Defines the
value that
IS written _
out to the
pin (If It IS
an output)

11— (= l

JA

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

Tristate buffer —< (= l

 When this
pin is an
output pin, It

allows the [ 1 -
PORTB flip- gl T
flop to drive

DATA BUS

L
the pin e

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

A

Input tri-state =< == |

buffer

_|— WDx

Pxn

RRx

DATA BUS

RPx

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



Last Time

 Memory behavior
e Microprocessor components

e Manipulating the state of pins
— Registers: DDRx, PORTX, and PINX

Andrew H. Fagg: Embedded Real- 132
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Today

Homework 1 solution set has been posted
Connecting C code to the I/O pins
Bit Masking

Getting into the hardware
— Compiling and downloading code

On Thursday: come ready with winavr and
AVRstudio installed on your laptops

Andrew H. Fagg: Embedded Real- 133
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/O Pin Implementation

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



DDRB

/O Pin Implementation

0

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

DDRB =

e “0” Is written to
the data bus

0

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
L
PORTX
& . rd! > PN o D
\l PORTxn ‘
T, 4
| _|— WPx
RESET
N
|
PINX  ——— e
L
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

0

DATA BUS



/O Pin Implementation 0

DDRB = 0: [ =1

AA A
LA A J

e “0” Is written to
the data bus

* This is input to '
the DDRB regqister

%
[
&
Z\
L.
®
@
o
=]

DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DDRB =

e “0” Is written to
the data bus
 This is input to
the DDRB regqister
« WDB is clocked
from high to low

0

AA A
LA A J

Bll|

(==

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



/O Pin Implementation

DDRB = O;

e “0” Is written to the

AA A
LA A J

Bll|

(==

l . 0 DDRX

data bus

 This is input to the
DDRB register

* WDB is clocked from
high to low

» “0” is stored by the
flip-flop

JA

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



/O Pin Implementation 0

DDRB = O; =i | .0 porx

:E r RDx
* “0” Is written to the data 0 v @
bus o} ——a— < ¢ g <
e This is input to the 2§ E
DDRB register RESET
« WDB is clocked from N
high to low P
« “0” is stored by flip-flop PINX O
» Which turns off the tri- L

state buffer

clk o

-> this is an input pin

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

< (= l -

0 DDRX
Q D 4'

DDRB = 1;

DDxn

T, 4
| _|— WDx

RESET

AA A
LA A J

e “1” Is written to the
data bus

A=
@)
A
_|
X

2
DATA BUS

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation

DDRB = 1;

e “1” Is written to the

AA A
LA A J

Bll|

(==

l . 1 DDRX

Bl

data bus

 This is input to the
DDRB register
 WDB is clocked from
high to low

» “1” is stored by flip-flop
* Which turns on the tri-
state buffer

-> this is an output pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

1

DATA BUS



PORTB

/O Pin Implementation

A

:1;

Pxn

1 (=
l 1 DDRX
& a D <
DDxn
GU.H <
| _|_ WDx
RESET
>
3 N S
1 -
PORTX
4'4 o D
¢ t \l ¢ 1 1 PORTxn ‘
T, 4
| _|— WPx
RESET
N
L~
PINX  ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation 1

PORTB = 1: [ =1

AA A
LA A J

e “1” Is written to the
data bus

 This is input to the
PORTB register

A ym

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

PORTB = 1: [ =1

AA A
LA A J

A ym

* “1” is written to the | .
data bus - 1
 This is input to the
PORTB register
 WPB is clocked from
high to low PINX
» “1” is stored by flip-flop

DATA BUS

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation 1

PORTB =

e “1” Is written to the

1;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “1” is stored by flip-flop

* Which provides a “1”
the tri-state buffer

-> output a “1”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— 1 <J & ® 4 <
1 1 2
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN




/O Pin Implementation 0

PORTB =

e “0” Is written to the
data bus

AA A
LA A J

Bll|

(==

A ym

o)
B
< o
o> 1 “J o \ 4 = ﬂ:
1 1, 5
a
RESET
PINX T
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN



/O Pin Implementation 0

PORTB =

e “0" Is written to the

O;

data bus

 This is input to the
PORTB register
 WPB is clocked from
high to low

« “0” is stored by flip-flop

* Which provides a “0”
the tri-state buffer

-> output a “0”

to

l &
RESET
>
3 N —
1 o 2
P 2
<1
— O <J & ® 4 <
0 ol =
()
RESET
PINX
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I'O CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN




foo

/O Pin Implementation

PORTB;

A

AA A
LA A J

PUD

Bll|

(==

l 1 DDRXx
& QD leg

A ym

DDxn

T, 4
| _|— WDx

RESET

Pxn

PUD:

SLEEP:

clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

clk o

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

DATA BUS



/O Pin Implementation

foo = PORTB: [ =1

AA A
LA A J

. . 1 3

* RPB is set high — | = | - o
\l PORTxn ﬂ:

0 0 0= - %

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

foo = PORTB: [ =1

AA A
LA A J

o)

 RPB is clocked from— | ,J{ | . @
. o~ <
high to low 0 0 =
« “0” is written to the 3

data bus

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DDRB = O;

* “0” Is written to the data
t)LJS; Pxn

AA A
LA A J

Bll|

(==

 This is input to the
DDRB register

 WDB is clocked from
high to low

» “0” is stored by flip-flop
e Which turns off the tri-
state buffer

-> this is an input pin

PUD:
SLEEP:
clk,q:

PULLUP DISABLE
SLEEP CONTROL
I/'O CLOCK

WDx:

RDx:

WPx:

RPx:

WRITE DDRx

READ DDRx

WRITE PORTx

READ PORTx REGISTER
READ PORTx PIN

clk o

0

DATA BUS



foo

/O Pin Implementation

A

PINB;

Pxn

11— (=
l 0 DDRX
& a D <
DDxn
Gu.n <
| _|_ WDx
RESET
>
E: h RDx
0 -
L PORTX
< a D
¢ \IO ¢ 1 O PORTxn ‘
UU.H <
| _|— WPx
RESET
N
L~
PINX  ——
l/
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



/O Pin Implementation

foo = PINB: [ =1

AA A
LA A J

o)

* RPB is set high - | JQ. | L 3
N PORTxn {

O O O, 4 g

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: I/'O CLOCK RRBx: READ PORTx REGISTER

RPx: READ PORTx PIN



/O Pin Implementation

DATA BUS

:“ <l| (} PUD
foo = PINB; | O porex
b & 0 D |g
T, %
| _|—WDX
RESET
< RDx
3 N —
O L
* RPB is clocked from— )5 | e ORTX
- \l PORTxn
high to low 0 Ol <
e The pin state is e L we
copied to the data bus g
L
PINX Px
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IYO CLOCK RRx: READ PORTx REGISTER

RPx: READ PORTx PIN



Bit Manipulation

PORTB Is a register

« Controls the value that is output by the set
of port B pins

e But — all of the pins are controlled by this
single register (which is 8 bits wide)

* In code, we need to be able to manipulate
the pins individually
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Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;
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Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together
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Bit-Wise Operators

01011110 A

10011011 B

? C=A&B
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Bit-Wise Operators

0101111

1001101

ol A

\]_./ B

C=A&B
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Bit-Wise Operators

0101111/(;\ A

1001101

\1/ B

v
0 C=A&B
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Bit-Wise Operators

010111ﬁb A

100110

il B

y
f

0 C=A&B
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Bit-Wise Operators

01011110 A

10011011 B

00011010 C=A&B
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Bit-Wise Operators

Other Operators:
e OR: |

e XOR: A

e NOT: ~
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A=A 4:
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of A to 07
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Bit Manipulation

Given a byte A, how do we set bit 2
(counting from 0) of Ato 17

A = A & OxXFB;

or

A=A & ~4;

Andrew H. Fagg: Embedded Real-
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/O Pin Implementation

Single bit of
PORT B

Pxn

A

Bll|

(==

l DDRXx
& QD leg

RESET
1.
3 N
|
PORTX
& . rd! > PN o D
\l PORTxn
UU.H <
| _|— WPx
RESET
N
|
Mer(———Wx
L~
clk o
WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WPx: WRITE PORTx
clk,q: IO CLOCK RRBx: READ PORTx REGISTER
' RPx: READ PORTx PIN

DATA BUS



A First
Program

Flash the
LEDs at a
regular
Interval

e How do we
do this?

200 ohm

28 27 20 25 24 23 23 21

],

20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC1
PC2

PCh PCH GIND

PC4

PDO
PC6 PDI

PD2
PD3

VCC

PCO AREF PB5
) Atmel Mega8

PD4 GND PB7

AVCC PB4 PB2
PB3 PBI

PD6 PBO
PD5 PD7

PBO6

L L L L
[ 2 3 45 6 7

Andrew H.

~ o~
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A First
Program

How do we
flash the LED
at a regular
Interval?

* We toggle the

state of PBO

28 27 26 25 24 23

200 ohm

],

23 21 20 19 18 17 16 15

INESESEEEEEEEEEEEEEENENEEEE

PC5 PC3 PCl GND AVCC PB4 PB2
PC4 PC2 PCO AREF PB5 PB3 PBI
) Atmel Mega8
PDO PD2 PD4 GND PB7 PD6 PBO
PC6 PDI PD3 VCC PB6 PD5 PD7
HEBEBERERERERERERERERERERE
11 2 3 4 5 6 77 8 9 10 11 12 13 14
LT
YW * ¥
* W
+5V 200 ohm
Andrew H. o

~ o~
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A First Program

main() {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec
+
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A Second Program

main() {
DDRB = 7; // Set port B pins 0, 1, and 2 as outputs
while(l) {
PORTB = PORTB ™ Ox1; // XOR bit O with 1
delay ms(500); // Pause for 500 msec

PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);
PORTB = PORTB ™ 0x2; // XOR bit 1 with 1
delay ms(250);

What does this program do?
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A Second Program

main() {

DDRB = OxFF; // Set all port B pins as outputs

while(l) {

PORTB = PORTB ™ 0Ox1;

delay ms(500);

PORTB = PORTB ™ 0x2;

delay ms(250);

PORTB = PORTB ™ Ox2;

delay ms(250);

// XOR bit O with 1
// Pause for 500 msec
// XOR bit 1 with 1

// XOR bit 1 with 1

Flashes LED on PB1 at 1 Hz
on PBO: 0.5 Hz
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Port-Related Registers

The set of C-accessible register for controlling

digital 1/O:
Directional |  Writing Reading
control
Port B DDRB PORTB PINB
Port C DDRC PORTC PINC
Port D DDRD PORTD PIND

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers
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Last Time(s)

e Bit manipulation: pin hardware to code
* Bit masking
* Project 1
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Today

A bit more on bit masking
Homework 1 discussion
Serial communication

Project 1 due in one week

Andrew H. Fagg: Embedded Real- 182
Time Systems: Microcontrollers



More Bit Masking

e Suppose we have a 3-bit number (so
values 0 ... 7)

e Suppose we want to set the state of B3,
B4, and B5 with this number (B3 is the
least significant bit)

 How do we express this in code?
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Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = command_to_ robot; // A value between 0 and 7
PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os

| ((val & 0Ox7)<<3); // OR with new values (shifted
// to fit within B3-B5
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Bit Masking

mainQ—¢
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned ort val; // A short is 8-bits wide

val = command _to robot; // A value between 0 and 7

PORTB = (PORTB & OxC7) // Set the current B3-B5 to Os
| ((val \& 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5)

}
B3-B7 are outputs; all others are still inputs (could

be different depending on how other pins are used)
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Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = command_to robot; // A value between 0 and 7

// Set the current B3-B5 to Os
<3); // OR with new values (shifted
// to fit within B3-B5

“Mask out” the current values of pins B3-
B5 (leave everything else intact)
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Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide
val = command_to robot; // A value between 0 and 7

PORTB = // Set the current B3-B5 to Os
((val & 0x7))<<3); // OR with new values (shifted

/ // to fit within B3-B5

Substitute an arbitrary value into these
bits
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Bit Masking

main() {
DDRB = OxF8; // Set pins B3, B4, B5, B6, B7 as outputs

unsigned short val; // A short i1s 8-bits wide

val = command_to robot; // A value between 0 and 7

PORTB =/J(PORTB & 0OxC7) // Set the current B3-B5 to Os

val & 0x7))<<3); // OR with new values (shifted
// to fit within B3-B5

And use the result to change the output
state of port B
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Reading the Digital State of Pins

Given: we want to read the state of PB6 and

OW C
OW C

OW C

PB7 and obtain avalue of 0 ... 3

0 we configure the port?
0 we read the pins?
o0 we translate their values into an

integer of 0 .. 37
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Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide
val = PINB;

outval = (val & 0xC0O) >> 6;
+
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Reading the Digital State of Pins

mainQ—¢
<§E§E = 0x38; // Set pins B3, B4, B5 as outputs
// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned shport val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & 0xC0O) >> 6;
+

B6 and B7 are configured as inputs
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Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

@ = PINB;

outval = I & OxCO) >> 6;

}
Read the value from the port
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Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval =((val & 0xC0)J)>> 6;
ks

“*Mask out” all bits except B6 and B7

Andrew H. Fagg: Embedded Real- 193
Time Systems: Microcontrollers



Reading the Digital State of Pins

main() {
DDRB = 0x38; // Set pins B3, B4, B5 as outputs

// All others are 1nputs (suppose we care
// about bits B6 and B7 only (so a 2-bit
// number)

unsigned short val, outval; // A short i1s 8-bits wide

val = PINB;

outval = (val & OxC
¥

Right shift the result by 6 bits — so the value of B6
and B7 are now Iin bits 0 and 1 of “outval”
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A Note About the C/Atmel Book

The book uses C syntax that looks like this:
PORTA.O = O; // Set bit 0 to O

This syntax is not available with our C compiler.
Instead, you will need to use:

PORTA &= OXFE;

or

PORTA &= ~1;

or

PORTA = PORTA & ~1;
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Putting It All Together

 Program development:
— On your own laptop

— We will use a C “crosscompiler” (avr-gcc and
other tools) to generate code on your laptop
for the mega8 processor

 Program download:

— We will use “in circuit programming”: you will
be able to program the chip without removing
It from your circuit
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Compiling and Downloading Code

« \WWe will work through the detalls on
Thursday. Before then:

— See the Atmel HowTo (pointer from the
schedule page)

— Windoze: Install AVR Studio and WINAVR

— OS X: Install OSX-AVR
« We will use ‘make’ for compiling and downloading

— Linux: Install binutils, avr-gcc, avr-libc, and
avrdude

e Same as OS X
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