

Groups

- Group 1: Alexander Chen, Ashley Bower, Ryne Whitehill, Armon Kolver, Manh Nguyen
- Group 2: Will Romberg, Chris Lyman, Michael Bumbaugh, James Davis, Michael Sarchet
- Group 3: Alison Nevels, Jared Balenseifen, Justin Linck, Jacob Sutton
- Group 4: Blayr Qualls, Thomas Zerbe, Tom Boone, Loren Lloyd, Joshua Steveson
- Group 5: Mourushi Muhoo, Bradley Cook, Matthew Senour, Simon Enouen

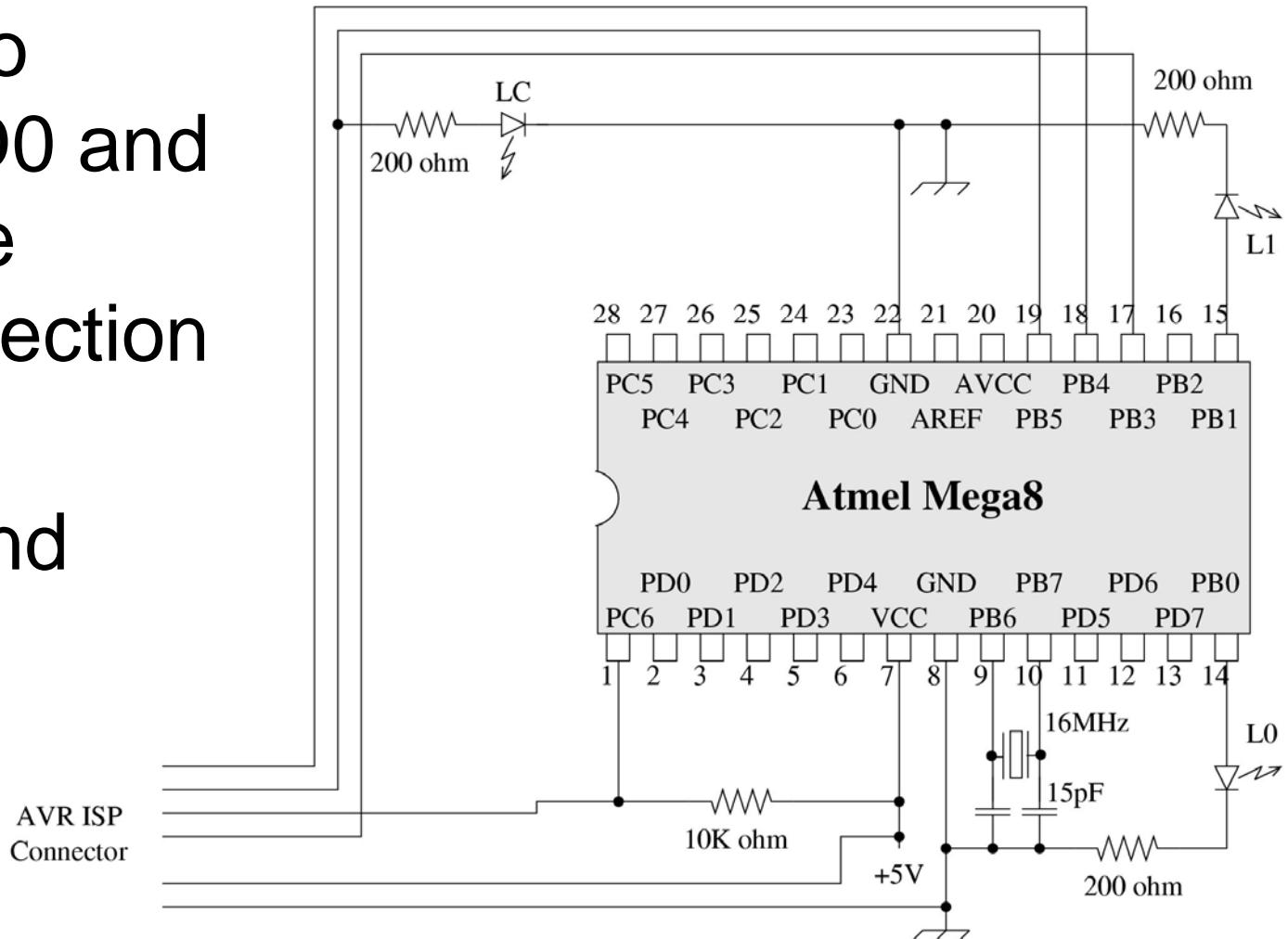
Today: Project 2

Group work for today:

- First circuit
- Essential software pieces
 - Reading compass heading
 - Computing compass error
 - Computing compass derivative
 - Displaying heading or error with LEDs (4 minimum)
 - Displaying rotational velocity with LEDs (5 minimum)

As you complete one or two tasks, show them to
Di or Josh

First Circuit


Pieces you need to assemble (after drawing a circuit diagram):

- Atmel with crystal
- Programming interface
- LEDs
 - Circle of LEDs for displaying heading or heading error
 - Line of LEDs for displaying heading velocity

Circuit Starting Point

Remember to
reserve PD0 and
PD1 for the
serial connection
to the heli

PB0, PB1, and
PB2 are
available

Reading the Compass

`int16_t get_heading(void)`

- Returns the heading in 10ths of a degree:
values between -1799 and 1800

Reading the Compass

- Your atmel sends: 'c' (1 character)
- The heli responds with:
“cDDDD\n\r”
 - There are always 4 decimal digits
 - Value is between 0000 and 3599

Reading the Compass

```
int16_t get_heading(void)
```

- Ask for the heading from the heli
- Translate the characters received from the heli into a number between 0 and 3599
- Translate this number to one that is between -1799 and 1800
 - Note: the heading that is represented must be the same after this transformation

Computing Error

```
int16_t compute_error(int16_t heading, int16_t goal)
```

Returns the heading error in 10ths of a degree:

$$\text{error} = \text{goal} - \text{heading}$$

But: return value must be between -1799 and 1800

Computing Velocity

```
int16_t compute_derivative(int16_t heading_current,  
                           int16_t heading_last)
```

Returns the heading velocity in 10ths of a degree per second:

- As with the error computation, you must handle the “wrap-around” cases

Displaying Orientation

```
void display_orient(int16_t theta)
```

Display either an absolute heading or a heading error using a set of LEDs

- At minimum, you need to use 4 LEDs for this
- How do you decide when to turn on each of the LEDs given theta?

Displaying Velocity

```
void display_derivative(int16_t velocity)
```

Display the rotational velocity using a set of LEDs

- At minimum, you need to use 5 LEDs for this
- How do you decide when to turn on each of the LEDs given theta?