Last Time

Bit manipulation

e Determining pin configuration: input/output
* Determining the output pin state
 Reading the input pin
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Today

 Communicating between devices
— Serial communication
— Communication in code

 Project 1 is due on Tuesday: don’t delay
on getting started

 Next Thursday’s class: in the lab
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Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
 Send commands to actuators
* Or both (e.qg., disks, audio, video devices)
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/O Systems

Communication can happen in a variety of
ways:

 Binary parallel signal (e.g., project 1)
e Analog
e Serial signals
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An Example:
SICK Laser Range Finder

_aser IS scanned
norizontally

Jsing phase information,
can infer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz
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Serial Communication

« Communicate a set of bytes using a single
signal line

e \We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.
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Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Typically, each side has a clock to tell it
when to write/read a bit

* In some cases, the sender will also send a
clock signal (on a separate line)

e |[n other cases, the sender/receiver will first
synchronize their clocks before transfer
begins
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Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

e This reduces the number of signal lines

 Bidirectional transmission, but the two
halves do not need to be synchronized In
time

But: we still need some way to agree that
data is valid. How?
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Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

 Must both be operating at essentially the
same transmit/receive frequency

* A data byte Is prefaced with a bit of
iInformation that tells the receiver that data
IS coming

 The recelver uses the arrival time of this
start bit to synchronize its clock
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A Typical Data Frame
01234567

start stop
hit bits

The stop bits allow the receiver to
iImmediately check whether this is a valid
frame

* |f not, the byte Is thrown away



Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

 Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)

—Very common in computing devices
o Software solutions in libraries
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One Standard: RS232-C

Defines a logic encoding standard:

* “High” Is encoded with a voltage of -5 to -
15 (-12 to -13V is typical)

* “Low” Is encoded with a voltage of 5 to 15
(12 to 13V is typical)
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RS232-C

Originally intended to connect:

e Data Terminal Equipment (DTE)
— Teletypes

« to Data Communication Equipment
(DCE)

— Modems

Now that we are connecting a computer to
some peripheral, it Is not always clear
which is the DTE and which is the DCE »



RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

e Pin 2: receive (to DTE from DCE)
e Pin 3: transmit (from DTE to DCE)
 Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)
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RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

 Handles all of the bit-level manipulation

* You only have to interact with it on the
byte level
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Mega8 UART C Interface

OUlib support:

ser1alO_1ni1t(9600): initialize the port @9600
bits per second

getchar(): receive a character

kbhit(): is there a character in the buffer?
putchar(0x45) : put a character out to the port

See the Atmel HOWTO
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Character Representation

e A “char” is just an 8-bit number

* In some cases, we just interpret it
differently.

e But: we can still perform mathematical
operations on it
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Binary Dec Hex Glyph Binary Dec Hex Glyph Binary |Dec| Hex Glyph

010 0000 32 20 =P 1000000 &4 40 @ 110 0000| 96 | &0
010 0001 33 | 21 ! 100 0001 | 65 | 41 A 110 0001 | 97 | 61 a
010 0010 34 @ 22 ! 100 0010 | 66 | 42 B 110 0010| 98 B2 b
0100011| 35 23 | # 100 0011 &7 | 43 C 110 0011| 99 | B3 c
010 0100| 36 24§ 100 0100 68 44 D 110 0100|100 64 d
0100101| 37 25| % 100 0101 | 69 | 45 Ei 110 0101|101 65 e
C h araCte r 0100110 38 | 268 & 100 0110| 70 | 46 E 110 0110{102 BB 1
010 0111 39 27 ' 1000111 71 [ 47 | G 110 0111/103 &7 g
. 010 1000 | 40 28 ( 100 1000 72 48 H 110 1000|104 B8  h
R e p re S e n tatl O n - 010 1001 41 29 ) 100 1001 | 73 | 49 I 110 1001|105 &9 [
. 010 1010 42  2A " 100 1010 74 | 4A J 110 1010|106 GA ]
010 1011 43 | 2B - 100 1011 | 75 | 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C i 100 1100 76  4C L 110 1100|108 6C |
010 1101 45 | 2D - 1001101 77 (4D M 110 1101/109 6B m
010 1110 46  2E ; 1001110 78 4E N 110 1110|110 6E = n
010 1111 | 47 | 2F / 100 1111 | 79 | 4F & 110 1111|111 | 6F 0
011 0000 | 48 | 30 0 101 0000 | 80 | 50 B 111 0000|112 70 p
011 0001 49 | 31 1 1010001 | 81 | 51 Q 111 0001|113 71 q
011 0010| 50 | 32 2 101 0010 | 82 | 52 R 111 0010|114 72 r
011 0011| 51 | 33 3 101 0011 | 83 | 53 S 111 0011|115 73 s
011 0100 52 34 4 1010100 84 54 T 111 0100|116 @ 74 t
011 0101| 53 | 35 5 101 0101 | 85 | 55 u 111 0101|117 75 u
011 0110 54 | 36 b 101 0110 86 | 56 V 111 0110|118 76 v
0110111| 55 37| 7 1010111 | 87 | 5% | W 111 0111{119 77 | w
011 1000| 56 38 B 101 1000 BB | 58 X 111 1000|120 78 X
011 1001| 57 39 9 101 1001 89 | 59 Y 111 1001|121 79 vy
011 1010| 58  3A : 101 1010 90  5A Z 111 1010{122 | 7A z
011 1011 59 | 3B : 101 1011 91 | 5B [ 111 1011|123 7B {
011 1100 60 3C < 101 1100 92 | 5C h 111 1100|124 7C |
Andrew H. Fag! 011 1101 61 3D = 101 1101 | 93 | 5D 1 111 1101|125 7D }
011 1110 62 | 3E| = 101 1110 94 | 5E iy 111 1110{126 ([ 7E| ~

Time Systen
011 1111 63 | 3F 7 101 1111 95 | 5F



Megas
UART
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Megas
UART

e Transmit pin
(PD1)
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Megas
UART
e Transmit pin
(PD1)

e Transmit
shift register
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Writing a Byte to the Serial Port

putchar(“A?);
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UBRR[H:L]
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UBRR[H:L]
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UBRR[H:L]
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UBRR[H:L]
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Transmit

Several shifts
later...
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UBRR[H:L]
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Recelve

“17 IS
presented to
the shift
register
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Recelve

Next bit Is
shifted In
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Recelve

And the next
bit...
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Recelve

And the 8t bit
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Recelve

Completed byte
IS stored In
the UART
buffer
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Reading a Byte from the Serial Port

iInt C;

c=getchar();
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Recelve

getchar()
retrieves this
byte from the
buffer
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Reading a Byte from the Serial Port

int c;
c=getchar();

Note: getchar() “blocks” until a byte Is
available

« Will only return with a value once one is
available to be returned
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Processing Serial Input
int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

kbhit() tells us whether a byte Is ready to be read
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Mega8 UART C Interface

printf(): formatted output
scant () : formatted input

See the LIbC documentation or the AVR C
textbook

Note: scanf() does not work properly with
serial0_init() (more on this later)
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Serial 1/0 by Polling

int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}
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Next Time

e Building circuits with Atmel mega8s
e Getting ready for project 2
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Last Time

Interrupts in general

External interrupt request
— The mega8 has 2 pins

Serial protocols
RS232-C
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Today

e Serial processing: from polling to interrupts
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/O By Polling

Polling works great ... but:
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/O By Polling

Polling works great ... but:

* \We have to guarantee that our other tasks

do not take too long (otherwise, we may
miss the event)

* Depending on the device, “too long” may
be very short
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Serial I/0O by Polling
int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

With this solution, how long can “something else” take?
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/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* \We know the event is coming very soon
 \We must respond to the event very quickly

(both are measured In nano- to Micro-
seconds)
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Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?
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Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
e Let's create a larger buffer...

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

67



Recelving Serial Data

Creating a larger (circular) buffer. This will
be a globally-defined data structure
composed of:

* N-byte memory space:
char buffer[BUF _SIZE];

* Integers that indicate the first element in
the buffer and the number of elements:

uint8 t front, nchars;
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Buffered Serial Data

Implementation:

 We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

 Then, our main() function can remove the
characters from the buffer
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Interrupt Handler

// Called when the UART receilves a byte
ISR(USART _RXC vect) {
// Handle the character 1n the UART buffer
1T(hchars == BUF_SIZE) {

getchar();
}else{
uitnt8 t 1 = (front + nchars)%BUF_SIZE;
buffer[1] = getchar();
++nchars;
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Interrupt Handler

// Called when the UART receilves a byte
ISR(USART _RXC vect) {
// Handle the character 1n the UART buffer
iInt ¢ = getchar();

1f(nhchars < BUF_SIZE) {
buffer[ (front+nchars)%BUF SIZE] = c;
nchars += 1;

Andrew H. Fagg: Embedded Real- 71
Time Systems: Serial Comm



Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer
Int get next character() {
1f(nchars == 0)

return(-1); // No characters
else{

// Return the next character
int tmp = buffer|[front];

front = (front + 1)%BUF SIZE;
—--nchars;

return(tmp) ;
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Last Time

 Interrupt Service Routines

e Circular buffers
— Also known as “First In-First Out” queues

— ISR filled the buffer as soon as serial data
came In

— Main program removed characters as needed
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Today

 The shared data problem

— Can occur when an ISR and the main
program access and modify the same data
structures

* Finite state machines
— Expressing sequential behavior
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Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer
int get next _character() {
int c;
if(nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;

front = (front + 1)%BUF_SIZE;
return(c);
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An Updated main()

int c;
while(1l) {

do {
Yalalals

while(???);
<do something else while waiting>

}
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An Updated main()

Iint c;
while(1) {
do {
C = get_next_character();
if(c 1= -1)

<do something with the character>
Mwhile(c = -1);

<do something else while waiting>

}
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Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ....
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Buffered Serial Data

Subtle i1ssues:

 The reading side of the code must make
sure that it does not allow the buffer to
overflow

— But at least we have BUF_SIZE times more
time before this happens

 \WWe also have a shared data problem ...
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The Shared Data Problem

 Two Independent segments of code that
could access the same data structure at
arbitrary times

* In our case, get _next_character() could be

iInterrupted while it Is manipulating the
buffer

— This can be very bad
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Solving the Shared Data Problem

 There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections
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Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

 Clever coding
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

 Disabling interrupts
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Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

» Clevercoding «——
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

e Disabling interrupts «——
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Disabling Interrupts

 How can we modify get_next _character()?

|t is iImportant that the critical section be as short
as possible

Assume:
e serial receive enable(): enable interrupt flag

« serial receive disable(): clear (disable) interrupt
flag
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Modified get_next_character()

int get next_character() {
int c;
serial_receive _disable();
1f(hchars == 0)
serial_receive _enable();
return(-1); // Error

else {
// Pull out the next character

c = buffer[front];

—--nchars;
front = (front + 1)%BUF _SIZE;

serial_receive _enable();
return(c);
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Initialization Detalls

main()

{

nchars = 0O;
front = O;

// Enable UART receive i1nterrupt
seri1al_receive enable();

// Enable global i1nterrupts
sei1();
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Enabling/Disabling Interrupts

 Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

e But: must not disable interrupts for a very
long time
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Final Note

For what we are doing:
* |ISRs are not interrupted

* This means that the ISR Is already a
critical section
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