Last Time

Bit manipulation

e Determining pin configuration: input/output
* Determining the output pin state
 Reading the input pin

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Today

 Communicating between devices
— Serial communication
— Communication in code

 Project 1 is due on Tuesday: don’t delay
on getting started

 Next Thursday’s class: in the lab

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
 Send commands to actuators
* Or both (e.qg., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

/O Systems

Communication can happen in a variety of
ways:

 Binary parallel signal (e.g., project 1)
e Analog
e Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

An Example:
SICK Laser Range Finder

_aser IS scanned
norizontally

Jsing phase information,
can infer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 5
Time Systems: Serial Comm

Serial Communication

« Communicate a set of bytes using a single
signal line

e \We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real- 11
Time Systems: Serial Comm

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Typically, each side has a clock to tell it
when to write/read a bit

* In some cases, the sender will also send a
clock signal (on a separate line)

e |[n other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real- 12
Time Systems: Serial Comm

Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

e This reduces the number of signal lines

 Bidirectional transmission, but the two
halves do not need to be synchronized In
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real- 13
Time Systems: Serial Comm

Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

 Must both be operating at essentially the
same transmit/receive frequency

* A data byte Is prefaced with a bit of
iInformation that tells the receiver that data
IS coming

 The recelver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real- 14
Time Systems: Serial Comm

A Typical Data Frame
01234567

start stop
hit bits

The stop bits allow the receiver to
iImmediately check whether this is a valid
frame

* |f not, the byte Is thrown away

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

 Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)

—Very common in computing devices
o Software solutions in libraries

Andrew H. Fagg: Embedded Real- 16
Time Systems: Serial Comm

One Standard: RS232-C

Defines a logic encoding standard:

* “High” Is encoded with a voltage of -5 to -
15 (-12 to -13V is typical)

* “Low” Is encoded with a voltage of 5 to 15
(12 to 13V is typical)

Andrew H. Fagg: Embedded Real- 20
Time Systems: Serial Comm

RS232-C

Originally intended to connect:

e Data Terminal Equipment (DTE)
— Teletypes

« to Data Communication Equipment
(DCE)

— Modems

Now that we are connecting a computer to
some peripheral, it Is not always clear
which is the DTE and which is the DCE »

RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

e Pin 2: receive (to DTE from DCE)
e Pin 3: transmit (from DTE to DCE)
 Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

22

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

 Handles all of the bit-level manipulation

* You only have to interact with it on the
byte level

Andrew H. Fagg: Embedded Real- 26
Time Systems: Serial Comm

Mega8 UART C Interface

OUlib support:

ser1alO_1ni1t(9600): initialize the port @9600
bits per second

getchar(): receive a character

kbhit(): is there a character in the buffer?
putchar(0x45) : put a character out to the port

See the Atmel HOWTO

Andrew H. Fagg: Embedded Real- 27
Time Systems: Serial Comm

Character Representation

e A “char” is just an 8-bit number

* In some cases, we just interpret it
differently.

e But: we can still perform mathematical
operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

28

Binary Dec Hex Glyph Binary Dec Hex Glyph Binary |Dec| Hex Glyph

010 0000 32 20 =P 1000000 &4 40 @ 110 0000| 96 | &0
010 0001 33 | 21 ! 100 0001 | 65 | 41 A 110 0001 | 97 | 61 a
010 0010 34 @ 22 ! 100 0010 | 66 | 42 B 110 0010| 98 B2 b
0100011| 35 23 | # 100 0011 &7 | 43 C 110 0011| 99 | B3 c
010 0100| 36 24§ 100 0100 68 44 D 110 0100|100 64 d
0100101| 37 25| % 100 0101 | 69 | 45 Ei 110 0101|101 65 e
C h araCte r 0100110 38 | 268 & 100 0110| 70 | 46 E 110 0110{102 BB 1
010 0111 39 27 ' 1000111 71 [47 | G 110 0111/103 &7 g
. 010 1000 | 40 28 (100 1000 72 48 H 110 1000|104 B8 h
R e p re S e n tatl O n - 010 1001 41 29) 100 1001 | 73 | 49 I 110 1001|105 &9 [
. 010 1010 42 2A " 100 1010 74 | 4A J 110 1010|106 GA]
010 1011 43 | 2B - 100 1011 | 75 | 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C i 100 1100 76 4C L 110 1100|108 6C |
010 1101 45 | 2D - 1001101 77 (4D M 110 1101/109 6B m
010 1110 46 2E ; 1001110 78 4E N 110 1110|110 6E = n
010 1111 | 47 | 2F / 100 1111 | 79 | 4F & 110 1111|111 | 6F 0
011 0000 | 48 | 30 0 101 0000 | 80 | 50 B 111 0000|112 70 p
011 0001 49 | 31 1 1010001 | 81 | 51 Q 111 0001|113 71 q
011 0010| 50 | 32 2 101 0010 | 82 | 52 R 111 0010|114 72 r
011 0011| 51 | 33 3 101 0011 | 83 | 53 S 111 0011|115 73 s
011 0100 52 34 4 1010100 84 54 T 111 0100|116 @ 74 t
011 0101| 53 | 35 5 101 0101 | 85 | 55 u 111 0101|117 75 u
011 0110 54 | 36 b 101 0110 86 | 56 V 111 0110|118 76 v
0110111| 55 37| 7 1010111 | 87 | 5% | W 111 0111{119 77 | w
011 1000| 56 38 B 101 1000 BB | 58 X 111 1000|120 78 X
011 1001| 57 39 9 101 1001 89 | 59 Y 111 1001|121 79 vy
011 1010| 58 3A : 101 1010 90 5A Z 111 1010{122 | 7A z
011 1011 59 | 3B : 101 1011 91 | 5B [111 1011|123 7B {
011 1100 60 3C < 101 1100 92 | 5C h 111 1100|124 7C |
Andrew H. Fag! 011 1101 61 3D = 101 1101 | 93 | 5D 1 111 1101|125 7D }
011 1110 62 | 3E| = 101 1110 94 | 5E iy 111 1110{126 ([7E| ~

Time Systen
011 1111 63 | 3F 7 101 1111 95 | 5F

Megas
UART

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

¥ ml CONTROL oK
________ ’7 T T T T T T T T T T T Transmiitter |
—_ X |
UDR (Transmit) CONTROL |
* PARITY |
GENERATOR
w PIN |
= '
= TRANSMIT SHIFT REGISTER controL ™ T@
<L
Pl — vVl |
g Receiver |
s clock RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER REE Db calitto: 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER |
|
UCSRA UCSRB UCSRC

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Megas
UART

e Transmit pin
(PD1)

DATABUS

UBRR[H:

L

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

a CONTROL

XCK

TxD

Receiver |
» clock RX |
RECOVERY contRoL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER 3 corso: 4J|— RxD
¥ |
PARITY |
HOR {Raoae) CHECKER |
|
UCSRB UCSRC

i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Megas
UART
e Transmit pin
(PD1)

e Transmit
shift register

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN
¥ ml CONTROL oK
(1~ ’7 T T T T T T T T T T T Transmiitter |
|
UDR (Transmit) COT\]-:ROL |
* PARITY |
|" GENERATOR |
PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
————————————————————— =
ecelver |
» cock | RX |
RECOVERY CONTROL |
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER [|
|
UCSRB UCSRC

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Writing a Byte to the Serial Port

putchar(“A?);

Andrew H. Fagg: Embedded Real- 33
Time Systems: Serial Comm

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

Transmit

a CONTROL

|
|
|
|
|
|
|
|
|

putchar(“A?);

™ |
01000001 contrRoL | |
- PARITY |
" * | 1 GEMERATOR |
PIN
a TRANMSMIT SHIFT REGISTER CONTROL —'p TxD
.:1_‘: -
ey T |
& Receiver
i CLOCK RX
RECOVERY ["] CONTROL

PARITY
UDR (Raceive}— CHECKER [

|
|
|
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD
|
|
|
|

e Sy S — S S VO S P S P S S |

Andrew H. Fagg: Embedded Real- 34
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

Transmit

a| CONTROL

|

|

|

|

|

|
| |
[Erecec]s— en L

Y | XCK
|

When UART
IS ready, the

I ” 7777 Transmitter |

| 01000001

|
|
0 \ 4 senenTor —
bufter | F9—E o1o0000: I3
Contents are - =1 Ff:{eceiwer'

RECOVERY CONTROL

copied to

I—' |_ DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY g CONTROL

the shift
register

PARITY
UDR (Raceive}— CHECKER [

x
-
o

e Sy S — S S VO S P S P S S |

UCSRA UCSRB UCSRC

$ {

Andrew H. Fagg: Embedded Real- 35
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

|
|
|
|
|
|
|
|
|

Transmit

The least I — ; ____________ - _?_E__'
significant bit i p— vy
(LSB) of the é D 01000001 Mmﬂ {1]
shift register | ———_
determines

the state of
the pin

PARITY
UDR (Raceive}— CHECKER [

|

|

I—- |_ |

DATA PIN
—:D. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD

¥ |

|

|

|

e Sy S — S S VO S P S P S S |

UCSRA UCSRB UCSRC

$ {

Andrew H. Fagg: Embedded Real- 36
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

|

|

|

|

|

|
| |
[Erecec]s— en L

Y | XCK
|

Transmit

After a delay, the | — S— —
UART shifts ETceal N pooy
the valuesto | |-E oot o P o]
the right 5 _______“““‘:‘;ﬂ;‘:‘——f@aﬁ'

RECOVERY CONTROL

PARITY
UDR (Raceive}— CHECKER [

|

|

I—- |_ |

DATA PIN
—:D. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD

¥ |

|

|

|

e Sy S — S S VO S P S P S S |

X = value doesn't — —
matter } } 3

Andrew H. Fagg: Embedded Real- 37
Time Systems: Serial Comm

UBRR[H:L]

¥

0sC

Transmit

BAUD RATE GENERATOR

|

|

|

|

|

|
| |
[Erecec]s— en L

Y | XCK
|

Next shift a—
(1~ ’7 T T T T T T T T T T T Transmiitter |
UDR (Transmit) COT\T:ROL I
PARITY |
i GENERATOR |
a T R 0
= s xx010000
g ________________________ Receiver
s clock RX
RECOVERY ["] CONTROL

PARITY
UDR (Raceive}— CHECKER [

|
|
|
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER ReCOVERY calitto: 4J|— RxD
|
|
|
|

e Sy S — S S VO S P S P S S |

UCSRA UCSRB UCSRC

$ { }

Andrew H. Fagg: Embedded Real- 38
Time Systems: Serial Comm

Transmit

Several shifts
later...

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC

DATABUS

GENERATOR

PARITY

CONTROL

XCK

TX
CONTROL

|
|
|
|
|
|
PIN "J|"
|

———————————————————————— R :cav:ﬁ'
w» clock RX |
RECOVERY ["] CONTROL |
I—- |_ |
DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY 1 oo 4J|— RxD
¥ |
PARITY |
UDR (Raceive}— CHECKER [|
|

e Sy S — S S VO S P S P S S |

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

39

UBRR[H:L]

¥

0sC

Recelve

BAUD RATE GENERATOR

a CONTROL

| |
i
| |
. . : ¥ [SYNCLOGIC [#—o pin -J:- XCK
 Recelve pin L |
I

________ ;7 7777 Transmitter |
—_ X |
P D O UDR (Transmit) CONTROL |
* PARITY |
0 GENERATOR == |
=2 _I
o REGISTER CONTROL — TxD
<L
NV e——_ T L
g Receiver |
- cLOC RX |
RECOVERY CONTROL |
|

RxD

I—' DATA PIN
—:D. RECEIVE SHIFT REGISTER RECOVERY g CONTROL

PARITY
UDR (Raceive}— CHECKER [

e Sy S — S S VO S P S P S S |

UCSRB UCSRC

{ }

Andrew H. Fagg: Embedded Real- 43
Time Systems: Serial Comm

UBRR[H:L]

¥

0sC

Recelve

BAUD RATE GENERATOR

|

|

|

|

|

|
I |
[srciooicje—" en |

Y | XCK
|

|
|
|
|
|
|
|
|
. . | »] CONTROL
o ecelve pin '
H - _ W
| Transmitter |
—_ X |
P D O : UDR (Transmit) CONTROL |
* PARITY |
i | GENERATOR |
. =] I , | PIN
° R C IV 3 | TRANSMIT SHIFT REGISTER controL ™ T@
ql"' -
eceive] .
. . g | Receiver|
shift reqister | a |
RECOVERY ["] CONTROL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER ReCOVERY calitto: qJ—| RxD
¥ |
PARITY |
UDR (Recewe}— cHEGKER |
|
UCSRB UCSRC

Andrew H. Fagg: Embedded Real- 44
Time Systems: Serial Comm

UBRR[H:L]

BAUD RATE GENERATOR %

Recelve

|
|
|
|
|
|
|
|
|

1% Bl . y » CONTROL
° 1 On the pln TR Ea e ‘* T T R R T T T TR
o Shift register e T o
o
i n itl aI Iy i n an E _::D_.B"RANSMW SHIFT REGISTER —I-. _I':D~ S T TxD
dt+----------—-—-—-—-—————————- g
unknown) T [
State :[]—L-E 000000 7] L reSovery [+ controc +H 1|
HRR ‘:EDE“'E*— checker [+ i
|
UCSRA UCSRB UCSRC

$ { }

Andrew H. Fagg: Embedded Real- 45
Time Systems: Serial Comm

Recelve

“17 IS
presented to
the shift
register

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

UDR (Transmit)

|
|
|
|
|
|
|
|
|

Y

PARITY

| ! GENERATOR

|
|
|
it | TxD
conTROL [1™

::D_~B"RANSMIT SHIFT REGISTER

DATABUS

a CONTROL

TX
CONTROL

EXXXXXXXX R

Receiver
i CLOCK RX
RECOVERY CONTROL

¥

UDR (Recenvet——]

PARITY
CHECKER

e Sy S — S S VO S P S P S S |

UCSRC

i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

46

UBRR[H:L]

BAUD RATE GENERATOR %

Recelve

|

|

|

|

|

|
I |
[srciooicje—" en |

Y | XCK
|

. . CONTROL

“1"Is shifted H——— o f—

into the most i B g -
Slgnlflcant blt % ::D_.B'RANSMWSHWTREGETER —I-.GENERATOR_L:D~ S _:f"' D

drr-— e

(msb) of the) e []

. . |
shift register I | N] 1|

|

Y |

ok (reconsr——{ | PARTY L |

|

UCSRA UCSRB UCSRC

: ¢ P

Andrew H. Fagg: Embedded Real- 47
Time Systems: Serial Comm

Recelve

Next bit Is
shifted In

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

Y

a CONTROL

PARITY

| ! GENERATOR

::D_~B"RANSMIT SHIFT REGISTER

DATABUS

P LIXXXXXX R

PIM
CONTROL

|
|
|
|
|
|
|
4+-mx
|

TX
CONTROL

™ CLOCK

RECOVERY

RX
CONTROL

¥

UDR (Recenvet——]

PARITY
CHECKER

S S VO S P S P S S |

UCSRC

i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

Recelve

And the next
bit...

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

Y

a CONTROL

PARITY

| ! GENERATOR

::D_~B"RANSMIT SHIFT REGISTER

DATABUS

" OL1XXXXX]

PIM
CONTROL

|
|
|
|
|
|
|
4+-mx
|

TX
CONTROL

™ CLOCK

RECOVERY

RX
CONTROL

¥

UDR (Recenvet——]

PARITY
CHECKER

S S VO S P S P S S |

UCSRC

i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

49

Recelve

And the 8t bit

UBRR[H:L]

¥

BAUD RATE GENERATOR

0sC

| sYNC LOGIC PIN

UDR (Transmit)

Y

a CONTROL

PARITY

| ! GENERATOR

::D_~B"RANSMIT SHIFT REGISTER

DATABUS

. 01101011 |

PIM
CONTROL

|
|
|
|
|
|
|
4+-mx
|

TX
CONTROL

™ CLOCK

RECOVERY

RX
CONTROL

¥

UDR (Recenvet——]

PARITY
CHECKER

S S VO S P S P S S |

UCSRC

i

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

50

Recelve

Completed byte
IS stored In
the UART
buffer

UBRR[H:L]

¥

BAUD RATE GENERATOR

| sYNC LOGIC PIN

DATABUS

a| CONTROL

XCK

TX

|
UDR (Transmit) CONTROL |
* PARITY |
|" GENERATOR |
PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
———————————————————————— R :cav:ﬁ'
s clock RX |
RECOVERY CONTROL |
- |
01101011 Salp o 0
RECOVERY CONTROL |
|
| PARITY |
01101011 CHECKER |
= |
UCSRA UCSRB UCSRC

{

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Reading a Byte from the Serial Port

iInt C;

c=getchar();

Andrew H. Fagg: Embedded Real- 52
Time Systems: Serial Comm

Recelve

getchar()
retrieves this
byte from the
buffer

UBRR[H:L]

¥

BAUD RATE GENERATOR

| sYNC LOGIC PIN

DATABUS

a| CONTROL

XCK

TX

{

|
UDR (Transmit) CONTROL |
T PARITY |
GENERATOR |
| PIN
TRANSMIT SHIFT REGISTER controL ™ T@
|
———————————————————————— R :cav:ﬁ'
w» clock RX |
RECOVERY CONTROL |
I_ |
DATA PIN
RECEIVE SHIFT REGISTER REE e IER caltRo: qH 0 I
¥ |
B] PARITY |
01101011 CHECKER |
=] - |
UCSRA UCSRB UCSRC

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Reading a Byte from the Serial Port

int c;
c=getchar();

Note: getchar() “blocks” until a byte Is
available

« Will only return with a value once one is
available to be returned

Andrew H. Fagg: Embedded Real- 54
Time Systems: Serial Comm

Processing Serial Input
int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

kbhit() tells us whether a byte Is ready to be read

Andrew H. Fagg: Embedded Real- 55
Time Systems: Serial Comm

Mega8 UART C Interface

printf(): formatted output
scant () : formatted input

See the LIbC documentation or the AVR C
textbook

Note: scanf() does not work properly with
serial0_init() (more on this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

56

Serial 1/0 by Polling

int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real- 57
Time Systems: Serial Comm

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

58

Next Time

e Building circuits with Atmel mega8s
e Getting ready for project 2

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

59

Last Time

Interrupts in general

External interrupt request
— The mega8 has 2 pins

Serial protocols
RS232-C

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

60

Today

e Serial processing: from polling to interrupts

Andrew H. Fagg: Embedded Real- 61
Time Systems: Serial Comm

/O By Polling

Polling works great ... but:

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

62

/O By Polling

Polling works great ... but:

* \We have to guarantee that our other tasks

do not take too long (otherwise, we may
miss the event)

* Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real- 63
Time Systems: Serial Comm

Serial I/0O by Polling
int c;
while(1l) {
1T(kbhit()) {
// A character i1s available for reading
c = getchar();
<do something with the character>

}

<do something else while waiting>

}

With this solution, how long can “something else” take?

Andrew H. Fagg: Embedded Real- 64
Time Systems: Serial Comm

/0O by Polling

In practice, we typically reserve this polling
approach for situations in which:

* \We know the event is coming very soon
 \We must respond to the event very quickly

(both are measured In nano- to Micro-
seconds)

Andrew H. Fagg: Embedded Real- 65
Time Systems: Serial Comm

Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

66

Recelving Serial Data

How can we allow the “something else” to
take a longer period of time?

 The UART implements a 1-byte buffer
e Let's create a larger buffer...

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

67

Recelving Serial Data

Creating a larger (circular) buffer. This will
be a globally-defined data structure
composed of:

* N-byte memory space:
char buffer[BUF _SIZE];

* Integers that indicate the first element in
the buffer and the number of elements:

uint8 t front, nchars;

Andrew H. Fagg: Embedded Real- 68
Time Systems: Serial Comm

Buffered Serial Data

Implementation:

 We will use an interrupt routine to transfer
characters from the UART to the buffer as
they become available

 Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real- 69
Time Systems: Serial Comm

Interrupt Handler

// Called when the UART receilves a byte
ISR(USART _RXC vect) {
// Handle the character 1n the UART buffer
1T(hchars == BUF_SIZE) {

getchar();
}else{
uitnt8 t 1 = (front + nchars)%BUF_SIZE;
buffer[1] = getchar();
++nchars;

Andrew H. Fagg: Embedded Real- 70
Time Systems: Serial Comm

Interrupt Handler

// Called when the UART receilves a byte
ISR(USART _RXC vect) {
// Handle the character 1n the UART buffer
iInt ¢ = getchar();

1f(nhchars < BUF_SIZE) {
buffer[(front+nchars)%BUF SIZE] = c;
nchars += 1;

Andrew H. Fagg: Embedded Real- 71
Time Systems: Serial Comm

Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer
Int get next character() {
1f(nchars == 0)

return(-1); // No characters
else{

// Return the next character
int tmp = buffer|[front];

front = (front + 1)%BUF SIZE;
—--nchars;

return(tmp) ;

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

12

Last Time

 Interrupt Service Routines

e Circular buffers
— Also known as “First In-First Out” queues

— ISR filled the buffer as soon as serial data
came In

— Main program removed characters as needed

Andrew H. Fagg: Embedded Real- 73
Time Systems: Serial Comm

Today

 The shared data problem

— Can occur when an ISR and the main
program access and modify the same data
structures

* Finite state machines
— Expressing sequential behavior

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

74

Reading Out Characters

// Called by a “main” program

// Get the next character from the circular buffer
int get next _character() {
int c;
if(nchars == 0)
return(-1); // Error
else {
// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;

front = (front + 1)%BUF_SIZE;
return(c);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

75

An Updated main()

int c;
while(1l) {

do {
Yalalals

while(???);
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

76

An Updated main()

Iint c;
while(1) {
do {
C = get_next_character();
if(c 1= -1)

<do something with the character>
Mwhile(c = -1);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

77

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

78

Buffered Serial Data

Subtle i1ssues:

 The reading side of the code must make
sure that it does not allow the buffer to
overflow

— But at least we have BUF_SIZE times more
time before this happens

 \WWe also have a shared data problem ...

Andrew H. Fagg: Embedded Real- 79
Time Systems: Serial Comm

The Shared Data Problem

 Two Independent segments of code that
could access the same data structure at
arbitrary times

* In our case, get _next_character() could be

iInterrupted while it Is manipulating the
buffer

— This can be very bad

Andrew H. Fagg: Embedded Real- 80
Time Systems: Serial Comm

Solving the Shared Data Problem

 There are segments of code that we want
to execute without being interrupted

* We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

81

Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

 Clever coding
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

 Disabling interrupts

Andrew H. Fagg: Embedded Real- 82
Time Systems: Serial Comm

Solving the Shared Data Problem

There are a variety of technigues that are
avallable:

» Clevercoding «——
e Hardware: test-and-set instruction

« Semaphores: software layer above test-
and-set

e Disabling interrupts «——

Andrew H. Fagg: Embedded Real- 83
Time Systems: Serial Comm

Disabling Interrupts

 How can we modify get_next _character()?

|t is iImportant that the critical section be as short
as possible

Assume:
e serial receive enable(): enable interrupt flag

« serial receive disable(): clear (disable) interrupt
flag

Andrew H. Fagg: Embedded Real- 84
Time Systems: Serial Comm

Modified get_next_character()

int get next_character() {
int c;
serial_receive _disable();
1f(hchars == 0)
serial_receive _enable();
return(-1); // Error

else {
// Pull out the next character

c = buffer[front];

—--nchars;
front = (front + 1)%BUF _SIZE;

serial_receive _enable();
return(c);

} Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

85

Initialization Detalls

main()

{

nchars = 0O;
front = O;

// Enable UART receive i1nterrupt
seri1al_receive enable();

// Enable global i1nterrupts
sei1();

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

86

Enabling/Disabling Interrupts

 Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted

— This allows for safe access to shared
variables

e But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

88

Final Note

For what we are doing:
* |ISRs are not interrupted

* This means that the ISR Is already a
critical section

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

89

