
Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

1

Last Time

Bit manipulation
• Determining pin configuration: input/output
• Determining the output pin state
• Reading the input pin

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

2

Today

• Communicating between devices
– Serial communication
– Communication in code

• Project 1 is due on Tuesday: don’t delay
on getting started

• Next Thursday’s class: in the lab

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

3

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

4

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal (e.g., project 1)
• Analog
• Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

5

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle

• Resolution: ~.5 degrees, 1
cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

11

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

12

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

13

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

14

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that data
is coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

15

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

16

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

20

One Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -

15 (-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

21

RS232-C
Originally intended to connect:
• Data Terminal Equipment (DTE)

– Teletypes
• to Data Communication Equipment

(DCE)
– Modems

Now that we are connecting a computer to
some peripheral, it is not always clear
which is the DTE and which is the DCE

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

22

RS232-C

Defines a pin assignment standard. For
example, with the DB-9 connectors:

• Pin 2: receive (to DTE from DCE)
• Pin 3: transmit (from DTE to DCE)
• Pin 5: common (ground)

Also common to have DB-25 connectors
(older standard)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

RS232 on the Mega8

Our mega 8 has a Universal, Asynchronous
serial Receiver/Transmitter (UART)

• Handles all of the bit-level manipulation
• You only have to interact with it on the

byte level

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

27

Mega8 UART C Interface
OUlib support:
serial0_init(9600): initialize the port @9600

bits per second
getchar(): receive a character
kbhit(): is there a character in the buffer?
putchar(0x45): put a character out to the port

See the Atmel HOWTO

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

28

Character Representation

• A “char” is just an 8-bit number
• In some cases, we just interpret it

differently.
• But: we can still perform mathematical

operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

29

Character
Representation:

ASCII

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Mega8
UART

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Mega8
UART

• Transmit pin
(PD1)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Writing a Byte to the Serial Port

putchar(‘A’);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

34

Transmit

putchar(‘A’);
01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

35

Transmit

When UART
is ready, the
buffer
contents are
copied to
the shift
register

01000001

01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

36

Transmit

The least
significant bit
(LSB) of the
shift register
determines
the state of
the pin

01000001 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

37

Transmit

After a delay, the
UART shifts
the values to
the right

x = value doesn’t
matter

x0100000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

38

Transmit

Next shift

xx010000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

39

Transmit

Several shifts
later…

xxxxxx01 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

43

Receive

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

44

Receive

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

45

Receive

• “1” on the pin
• Shift register

initially in an
unknown
state xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

46

Receive

“1” is
presented to
the shift
register

xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

47

Receive

“1” is shifted
into the most
significant bit
(msb) of the
shift register 1xxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

Receive

Next bit is
shifted in

11xxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

49

Receive

And the next
bit…

011xxxxx 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

50

Receive

And the 8th bit

01101011 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Receive

Completed byte
is stored in
the UART
buffer

01101011 0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

52

Reading a Byte from the Serial Port

int c;

c=getchar();

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Receive

getchar()
retrieves this
byte from the
buffer

0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Reading a Byte from the Serial Port

int c;

c=getchar();

Note: getchar() “blocks” until a byte is
available

• Will only return with a value once one is
available to be returned

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

55

Processing Serial Input

kbhit() tells us whether a byte is ready to be read

int c;
while(1) {
if(kbhit()) {

// A character is available for reading
c = getchar();
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

56

Mega8 UART C Interface
printf(): formatted output
scanf(): formatted input

See the LibC documentation or the AVR C
textbook

Note: scanf() does not work properly with
serial0_init() (more on this later)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

57

Serial I/O by Polling
int c;
while(1) {
if(kbhit()) {

// A character is available for reading
c = getchar();
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

58

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

59

Next Time

• Building circuits with Atmel mega8s
• Getting ready for project 2

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

60

Last Time

• Interrupts in general
• External interrupt request

– The mega8 has 2 pins
• Serial protocols
• RS232-C

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

61

Today

• Serial processing: from polling to interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

62

I/O By Polling

Polling works great … but:

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

63

I/O By Polling

Polling works great … but:
• We have to guarantee that our other tasks

do not take too long (otherwise, we may
miss the event)

• Depending on the device, “too long” may
be very short

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

64

Serial I/O by Polling

With this solution, how long can “something else” take?

int c;
while(1) {
if(kbhit()) {

// A character is available for reading
c = getchar();
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

65

I/O by Polling

In practice, we typically reserve this polling
approach for situations in which:

• We know the event is coming very soon
• We must respond to the event very quickly

(both are measured in nano- to micro-
seconds)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

66

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

67

Receiving Serial Data

How can we allow the “something else” to
take a longer period of time?

• The UART implements a 1-byte buffer
• Let’s create a larger buffer…

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

68

Receiving Serial Data

Creating a larger (circular) buffer. This will
be a globally-defined data structure
composed of:

• N-byte memory space:
char buffer[BUF_SIZE];

• Integers that indicate the first element in
the buffer and the number of elements:

uint8_t front, nchars;

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

69

Buffered Serial Data

Implementation:
• We will use an interrupt routine to transfer

characters from the UART to the buffer as
they become available

• Then, our main() function can remove the
characters from the buffer

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

70

Interrupt Handler
// Called when the UART receives a byte
ISR(USART_RXC_vect) {
// Handle the character in the UART buffer
if(nchars == BUF_SIZE) {

getchar();
}else{

uint8_t i = (front + nchars)%BUF_SIZE;
buffer[i] = getchar();
++nchars;

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

71

Interrupt Handler
// Called when the UART receives a byte
ISR(USART_RXC_vect) {
// Handle the character in the UART buffer
int c = getchar();

if(nchars < BUF_SIZE) {
buffer[(front+nchars)%BUF_SIZE] = c;
nchars += 1;

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

72

Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

if(nchars == 0)
return(-1); // No characters

else{
// Return the next character
int tmp = buffer[front];
front = (front + 1)%BUF_SIZE;
--nchars;
return(tmp);

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

73

Last Time

• Interrupt Service Routines
• Circular buffers

– Also known as “First In-First Out” queues
– ISR filled the buffer as soon as serial data

came in
– Main program removed characters as needed

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

74

Today

• The shared data problem
– Can occur when an ISR and the main

program access and modify the same data
structures

• Finite state machines
– Expressing sequential behavior

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

75

Reading Out Characters
// Called by a “main” program
// Get the next character from the circular buffer
int get_next_character() {

int c;
if(nchars == 0)

return(-1); // Error
else {

// Pull out the next character
c = buffer[front];

// Update the state of the buffer
--nchars;
front = (front + 1)%BUF_SIZE;
return(c);

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

76

An Updated main()
int c;
while(1) {
do {

????

}while(???);
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

77

An Updated main()
int c;
while(1) {
do {

c = get_next_character();
if(c != -1)

<do something with the character>
}while(c != -1);

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

78

Buffered Serial Data

This implementation captures the essence
of what we want, but there are some
subtle things that we must handle ….

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

79

Buffered Serial Data

Subtle issues:
• The reading side of the code must make

sure that it does not allow the buffer to
overflow
– But at least we have BUF_SIZE times more

time before this happens
• We also have a shared data problem …

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

80

The Shared Data Problem

• Two independent segments of code that
could access the same data structure at
arbitrary times

• In our case, get_next_character() could be
interrupted while it is manipulating the
buffer
– This can be very bad

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

81

Solving the Shared Data Problem

• There are segments of code that we want
to execute without being interrupted

• We call these code segments critical
sections

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

82

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

83

Solving the Shared Data Problem

There are a variety of techniques that are
available:

• Clever coding
• Hardware: test-and-set instruction
• Semaphores: software layer above test-

and-set
• Disabling interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

84

Disabling Interrupts

• How can we modify get_next_character()?

• It is important that the critical section be as short
as possible

Assume:
• serial_receive_enable(): enable interrupt flag
• serial_receive_disable(): clear (disable) interrupt

flag

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

85

Modified get_next_character()
int get_next_character() {

int c;
serial_receive_disable();
if(nchars == 0)

serial_receive_enable();
return(-1); // Error

else {
// Pull out the next character
c = buffer[front];
--nchars;
front = (front + 1)%BUF_SIZE;
serial_receive_enable();
return(c);

}
}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

86

Initialization Details
main()
{
nchars = 0;
front = 0;

// Enable UART receive interrupt
serial_receive_enable();

// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

88

Enabling/Disabling Interrupts

• Enabling/disabling interrupts allows us to
ensure that a specific section of code (the
critical section) cannot be interrupted
– This allows for safe access to shared

variables

• But: must not disable interrupts for a very
long time

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

89

Final Note

For what we are doing:
• ISRs are not interrupted
• This means that the ISR is already a

critical section

