

Embedded Real-Time Systems (AME 3623)

Homework 2 Solutions

February 25, 2009

Question 1

1. (5pts) Given the binary number: 010111010. What is the decimal equivalent? What is the hexadecimal equivalent? Show your work.

$$2 + 8 + 16 + 32 + 128 = 186$$

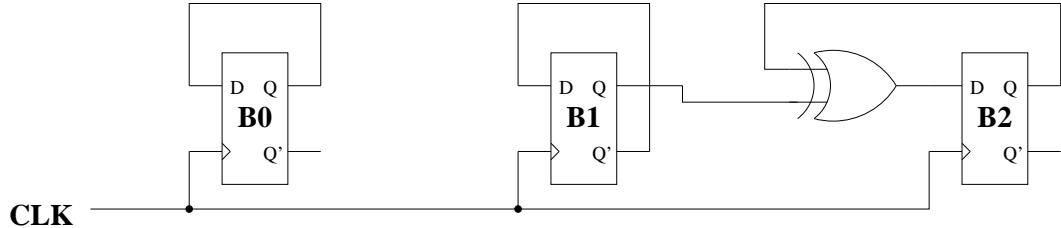
0xBA

2. (5pts) Given the binary number: 110110111. What is the decimal equivalent? What is the hexadecimal equivalent? Show your work.

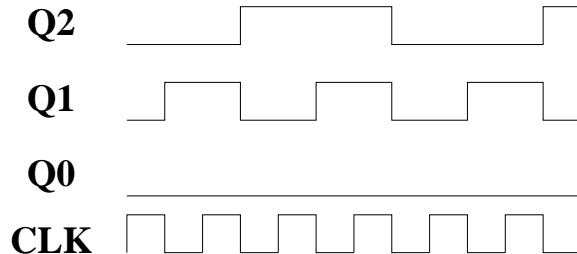
$$1 + 2 + 4 + 16 + 32 + 128 + 256 = 439$$

0x1B7

3. (5pts) Given the decimal number: 486. What is the binary equivalent?
 Show your work (all of the steps of the algorithm that we discussed in class).


value	binary	<i>i</i>	2^i
486	000000000		
		8	256
230	100000000		
		7	128
102	110000000		
		6	64
38	111000000		
		5	32
6	111100000		
		2	4
2	111100100		
		1	2
0	111100110		

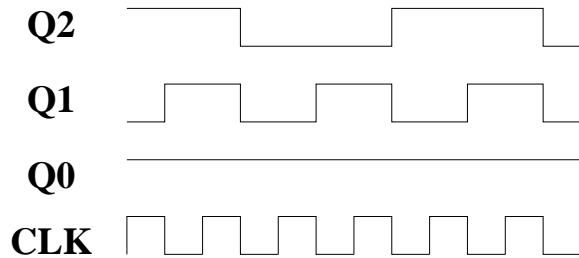
4. (5pts) Given the decimal number: 524. What is the binary equivalent?
 Show your work.


value	binary	<i>i</i>	2^i
524	0000000000		
		9	512
12	1000000000		
		3	8
4	1000001000		
		2	4
0	1000001100		

Question 2

Consider the following circuit with input CLK :

1. (10pts) Assume that the initial state is: $Q0 = 0, Q1 = 0, Q2 = 0$ Show the timing diagram for $Q0, Q1$ and $Q2$ as the clock (CLK) is pulsed (show 6 transitions).


2. (10pts) Interpreting $Q2, Q1, Q0$ as a 3-bit binary number (with $Q0$ as the 1's digit), what is the sequence of values that this circuit produces?

$Q2, Q1, Q0 = 000, 010, 100, 110, 000, 010, 100, \dots$

or:

$0, 2, 4, 6, 0, 2, 4, \dots$

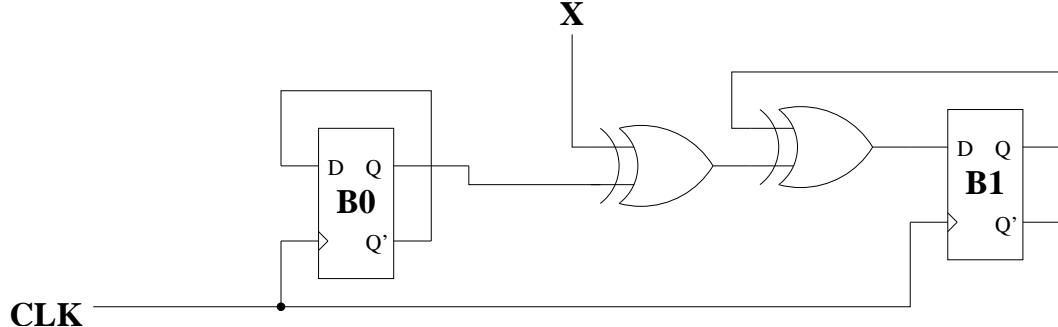
3. (10pts) Assume that the initial state is: $Q0 = 1, Q1 = 0, Q2 = 1$ Show the timing diagram for $Q0, Q1$ and $Q2$ as the clock (CLK) is pulsed (show 6 transitions).

4. (10pts) Interpreting $Q2, Q1, Q0$ as a 3-bit binary number (with $Q0$ as the 1's digit), what is the sequence of values that this circuit produces?

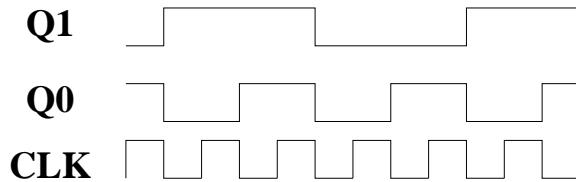
$Q2, Q1, Q0 = 101, 111, 001, 011, 101, 111, 001, \dots$

or:

5, 7, 1, 3, 5, 7, 1, ...


5. (10pts) What is the mathematical function of this circuit?

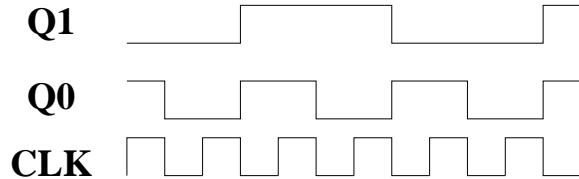
The circuit counts by two on each clock cycle.


(modulo 8 = after the counter reaches 7, it starts over again).

Question 3

Consider the following circuit with inputs CLK and X :

1. (10pts) Assume that the initial state is: $Q_0 = 1$ and $Q_1 = 0$. Assume also that $X = 0$. Show the timing diagram for Q_0 and Q_1 as the clock (CLK) is pulsed.


2. (10pts) Interpreting Q_1, Q_0 as a 2-bit binary number (with Q_0 as the 1's digit), what is the sequence of values that this circuit produces?

$Q_1\ Q_0 = 01, 10, 11, 00, 01, 10, 11, \dots$

3. (10pts) What is the mathematical function of this circuit when $X = 0$?

Counts by 1 on each clock tick (modulus 4).

4. (10pts) Assume the same initial state as above, and assume that $X = 1$. Show the timing diagram for $Q0$ and $Q1$ as the clock (CLK) is pulsed.
Note: $A \oplus 1 = \bar{A}$.

5. (10pts) What is the sequence of values that this circuit produces?

$Q_1 \ Q_0 = 01, 00, 11, 10, 01, 00, 11, \dots$

6. (10pts) What is the function of this circuit when $X = 1$?

Downward counting, modulus 4.