Embedded Real-Time Systems (AME 3623)

Homework 4 Solutions

April 30, 2009

Question 1

1. (10pts) Briefly explain why polling can be undesirable when performing
input/output operations.

Polling is undesirable because the processor can potentially spend a long
time waiting for something to happen (we refer to this as busy waiting).
This time could otherwise be used to do other things.

2. (10pts) Briefly outline what the microprocessor does in response to an
interrupt.

The microprocessor stops what it is currently executing, remembers the
location of the next instruction, executes the associated interrupt service
routine, and then returns to the next instruction in the main program.



Question 2

Suppose we want to produce a regular interrupt frequency of approximately
30.49 Hz. Assume that we are using a 16 M H z crystal for our clock.

1. (5 pts) Which timer should we use?

Timer 1.

2. (5 pts) Which prescaler should we use?

Prescaler: 8



Question 3

Suppose we want to produce a regular interrupt every 512 pus. Assume that
we are using a 16 M Hz crystal for our clock.

1. (5 pts) Which timer should we use?

Timer 2.

2. (5 pts) Which prescaler should we use?

Prescaler: 32

Question 4

1. (15pts) Suppose we want a function — called donow() — to be executed
once every 0.79s. Assume a system clock of 16 M Hz. What is the
timerl prescaler configuration and the (pseudo)code for the interrupt
routine (the code does not need to be syntactically correct)? Also -
show the code in your main function that configures the timer.

We will use a prescaler of 64. This gets us down to an interrupt every
0.2621 s. We then need an interrupt routine with an additional counter
that expires at 3. So, we are left with an interrupt interval of: 3 * 64 x
256 * 256,/16000000 = 0.7864s.

ISR (TIMER1_OVF _vect) {

static uint8_t counter = 0;

++counter ;
if(counter == 3) {
donow ();
counter = 0;
¥
}’.



Somewhere in the main program:

// Interrupt occurs every

/) (64%256%256)/16000000 = 0.2621 sec
timerl_config (TIMER1_PRE 6 );

// Enable the timer interrupt
timerl_enable ();

// Enable global interrupts

sei();



Question 5

Consider the following code.

volatile uint8_t duration;

ISR (TIMERO_OVF _vect) {

static uint8_t counter = 0;
4+4counter;

if (counter = 0) {

donow1 ();

}

if (duration = counter) {
donow?2 () ;

}s
b

Somewhere in the main program:

// Interrupt occurs every

/) (256%256)/16000000 = §.096 ms
timerO_config (TIMERO_-PRE_256 ) ;

// Enable the timer interrupt
timerO_enable ();

// Enable global interrupts

sei();

while (1)
{

}

<change the value of duration>



1. (5 pts) What does the ISR do?

Assuming that the global variable duration is not changing: the ISR
calls donowl() and donow2() at regular intervals (both are called once
every (256 x 256 * 256) /16000000 = 1.0486s). The second function is
called duration x 4.096ms after the first.

2. (5 pts) What does the main program do (in the while() loop)?

It is responsible for setting the timing difference between calls to donow1()

and donow?2().



