#### Last Time

Analog Circuits Review

- Voltage
- Amperage
- Resistance
- Capacitance

#### Today

- A bit more on analog circuits
  - RC circuits
  - Transistors
- Analog to digital circuits
  - Transistors to basic logic gates
  - Introduction to Boolean Algebra
  - Connecting digital circuits to Boolean Algebra

#### Administrivia

#### Homework 1 will be delayed by a lecture

#### **Encoding Information**

In your 'circuits and sensors' class: how did you encode information?

- e.g., the acceleration measured by your accelerometer?
- or the rate of bend of a piezoelectric device?

#### **Encoding Information**

- Acceleration (or bend rate) is encoded in the voltage that is output from the circuit
- As acceleration increases, the voltage also increases

#### **Encoding Information**

- Acceleration (or bend rate) is encoded in the voltage that is output from the circuit
- As acceleration increases, the voltage also increases
- We say that this is an analog or continuous encoding of the information

#### Analog Encoding

What is the problem with analog encoding?

## Analog Encoding

What is the problem with analog encoding?

- Small injections of noise either in the sensor itself or from external sources – will affect this analog signal
- This leads to errors in how we interpret the sensory data

How do we fix this?

## **Digital Encoding**

How do we fix this?

- At any instant, a single signal encodes one of two values:
  - A voltage around 0 (zero) Volts is interpreted as one value
  - A voltage around +5 V is interpreted as another value

#### **Binary Encoding**

- Binary digits can have one of two values: 0 or 1
- We call 0V a binary "0" (or FALSE)
- And +5V a binary "1" (or TRUE)

## Binary Encoding

- Exactly what these levels are depends on the technology that is used (it is common now to see +1.8V as a binary 1 in lowpower processors)
- This encoding is much less sensitive to noise: small changes in voltage do not affect how we interpret the signal

#### Transistors

What do transistors do for us?

- In general: they act as current amplifiers
- But: we can use them as electronic switches to process digital signals

#### **Transistors to Digital Processing**

Consider the following circuit:

- What is the output given an input of 0V?
- An input of +5V?



#### **Transistors to Digital Processing**

- Input: 0V -> Output +5V
- Input: +5V -> Output 0V
- We call this a "NOT" gate



#### The NOT Gate

• Logical Symbol:



- Algebraic Notation: B = A
- Truth Table:

| А | В |
|---|---|
| 0 | 1 |
| 1 | 0 |

#### A Two-Input Gate +5V

What does this circuit compute?

- A and B are inputs
- C is the output



#### The "NAND" Gate A B A B C B

• Algebraic Notation:  $C = A^*B = AB$ 

• Truth Table:

| А | В | С |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### The "AND" Gate

• Logical Symbol:



• Algebraic Notation:  $C = A^*B = AB$ 

• Truth Table:

| А | В | С |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |



#### The "NOR" Gate

• Logical Symbol:



• Algebraic Notation: C = A+B

• Truth Table:

| А | В | С |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

#### The "OR" Gate

• Logical Symbol:



• Algebraic Notation: C = A+B

• Truth Table:

| А | В | C |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

#### **N-Input Gates**

Gates can have an arbitrary number of inputs (2,3,4,8,16 are common)





#### Last Time

- Transistors to Logic Gates
- 3 ways of specifying logical computation:
  - Circuit (gates): AND, OR, NOT
  - Algebra
  - Truth Tables

#### Today

- Building more complicated logic circuits
- Algebraic manipulation and circuit reduction

#### Exclusive OR ("XOR") Gates

Logical Symbol:



• Algebraic Notation:  $C = A \oplus B$ 

• Truth Table:



How would we implement this with AND/OR/NOT gates?

#### An XOR Implementation



#### An Example

Problem: implement an alarm system

- There are 3 inputs:
  - Door open ("1" represents open)
  - Window open
  - Alarm active ("1" represents active)
- And one output:
  - Siren is on ("1" represents on) when either the door or window are open – but only if the alarm is active

What is the truth table?

#### Alarm Example: Truth Table

| D | W | А | Siren |                |
|---|---|---|-------|----------------|
| 0 | 0 | 0 | 0     |                |
| 0 | 0 | 1 | 0     |                |
| 0 | 1 | 0 | 0     |                |
| 0 | 1 | 1 | 1     | 🔶 D W A        |
| 1 | 0 | 0 | 0     | +              |
| 1 | 0 | 1 | 1     | <b>→</b> D W A |
| 1 | 1 | 0 | 0     | +              |
| 1 | 1 | 1 | 1     | DWA 🔶          |



Time Systems: Digital Logic

#### Alarm Example: Circuit

Is a simpler circuit possible?

#### Alarm Example: Truth Table

| D | W | A | Siren |
|---|---|---|-------|
| 0 | 0 | 0 | 0     |
| 0 | 0 | 1 | 0     |
| 0 | 1 | 0 | 0     |
| 0 | 1 |   | (1)   |
| 1 | 0 | 0 | 0     |
|   | 0 | 1 | (1)   |
| 1 | 1 | 0 | 0     |
|   | 1 | 1 | (1)   |

#### Alarm: An Alternative Circuit



#### Alarm Example: Truth Table

| D | W | A | Siren |       |
|---|---|---|-------|-------|
| 0 | 0 | 0 | 0     |       |
| 0 | 0 | 1 | 0     |       |
| 0 | 1 | 0 | 0     |       |
| 0 | 1 | 1 | 1     | D W A |
| 1 | 0 | 0 | 0     | +     |
| 1 | 0 | 1 | 1     | D W A |
| 1 | 1 | 0 | 0     | +     |
| 1 | 1 | 1 | 1     | DWA 🔶 |

#### Alarm Example: Truth Table



#### Minterms

- AND containing all function inputs

   in our example these are D, W, A
- Some of the inputs may be "NOT'ed"
- Called a "minterm" because the AND is
  - 1 for exactly one case, and
  - 0 otherwise

# Minterm Approach to Representing a Truth Table/Function

- OR together a set of minterms:
  - One minterm for each row for which the output is 1
- Example:

#### Siren = $\overline{D}$ W A + D $\overline{W}$ A + D W A

• Circuit is correct, but may not be smallest
#### Boolean Algebra

- There are exactly two numbers in Boolean System: "0" and "1"
- You are already familiar with the "integers": {... -2, -1, 0, 1, 2, ...} (and Integer Algebra)

#### **Boolean Algebra**

• Like the integers, Boolean Algebra has the following operators:

|         | Integers | Boolean |
|---------|----------|---------|
| +       | addition | OR      |
| *       | product  | AND     |
| inverse | negation | NOT     |

### **NOT Operator**

Definition:

- $\overline{0} = 0' = 1$
- $\overline{1} = 1' = 0$

NOTE: this is identical to our truth table (just a slightly different notation)

Suppose that "X" is a Boolean variable, then:

•  $\overline{\overline{X}} = X'' = X$ 

# OR (+) Operator

Definition:

- 0+0 = 0
- 0+1 = 1
- 1+0 = 1
- 1+1 = 1

# OR (+) Operator

Suppose "X" is a Boolean variable, then:

- 0 + X = X
- 1 + X = 1
- X + X = X
- X + X' = 1

# AND (\*) Operator

Definition:

- $0^*0 = 0$
- 0\*1 = 0
- 1\*0 = 0
- 1\*1 = 1

### AND (\*) Operator

Suppose "X" is a Boolean variable, then:

- 0 \* X = 0
- 1 \* X = X
- X \* X = X
- X \* X' = 0

#### Boolean Algebra Rules: Precedence

# The AND operator applies before the OR operator:

$$A * B + C = (A * B) + C$$
  
 $A + B * C = A + (B * C)$ 

#### Boolean Algebra Rules: Association Law

If there are several AND operations, it does not matter which order they are applied in:

A \* B \* C = (A \* B) \* C = A \* (B \* C)

#### Boolean Algebra Rules: Association Law

Likewise for the OR operator:

$$A + B + C = (A + B) + C = A + (B + C)$$

#### Boolean Algebra Rules: Distributive Law

AND distributes across OR:

$$A * (B + C) = (A * B) + (A * C)$$

$$A + (B * C) = (A + B) * (A + C)$$

#### Boolean Algebra Rules: Commutative Law

# Both AND and OR are symmetric operators (the order of the variables does not matter):

$$A + B = B + A$$

A \* B = B \* A

#### DeMorgan's Laws

#### (A \* B)' = A' + B'

# How do we convince ourselves that this is true?

#### Proof by Truth Table

| A | В | (A * B)' | A' + B' |
|---|---|----------|---------|
| 0 | 0 | 1        | 1       |
| 0 | 1 | 1        | 1       |
| 1 | 0 | 1        | 1       |
| 1 | 1 | 0        | 0       |

NOTE: change in the NOT notation

#### DeMorgan's Laws (cont)

#### (A + B)' = A' \* B'

#### Proof by Truth Table

| A | В | (A + B)' | A' * B' |
|---|---|----------|---------|
| 0 | 0 | 1        | 1       |
| 0 | 1 | 0        | 0       |
| 1 | 0 | 0        | 0       |
| 1 | 1 | 0        | 0       |

#### Alarm Example: Truth Table

| D | W | A | Siren |          |
|---|---|---|-------|----------|
| 0 | 0 | 0 | 0     |          |
| 0 | 0 | 1 | 0     |          |
| 0 | 1 | 0 | 0     |          |
| 0 | 1 | 1 | 1     | D' W A   |
| 1 | 0 | 0 | 0     | +        |
| 1 | 0 | 1 | 1     | → D W' A |
| 1 | 1 | 0 | 0     | +        |
| 1 | 1 | 1 | 1     | DWA      |

#### **Reduction with Algebra**



#### Reduction with Algebra (cont)



We have the same circuit as before!



### Last Time

- Truth Tables
- Basic logic gates: AND, OR, NOT
- Introduction to Boolean Algebra
  - Minterms
  - Precedence: AND before OR
  - Laws: Commutative, Associative, and Distributive
  - Identities
  - DeMorgan's Laws
- Boolean Algebra to Circuits (and back)

#### Circuit Design Process

- Start with a truth table
- Convert to "minterms" algebraic representation
- Simplify using Boolean Algebra
- Translate into circuit diagram

#### Administrivia

• Homework 1 due in one week

#### Today

- Multiplexers
- Demultiplexers
- Tri-state Buffers
- Circuit design practice

#### Multiple Output Variables

Suppose we have a function with multiple output variables?

• How do we handle this?

#### Multiple Output Variables

How do we handle this?

- One algebraic expression for each output
- But: in the final implementation, some subcircuits may be shared

### More Logical Components

- Multiplexer
- Demultiplexer
- Tristate buffer

#### 2-Input Multiplexer



- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1





#### 2-Input Multiplexer

- A multiplexer is a device that selects between two input lines
- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1



#### 2-Input Multiplexer

- A multiplexer is a device that selects between two input lines
- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1



#### Multiplexer Truth Table

Andrew H. Fagg: Embedded Real-Time Systems: Digital Logic

What does the algebraic expression look like?

#### Multiplexer Truth Table



#### Multiplexer

#### C = S'AB' + S'AB + SA'B + SAB

Is there a simpler expression?

#### **Reduction with Algebra**

| S'AB' + S'AB + SA'B + SAB  |                               |
|----------------------------|-------------------------------|
| = S'A(B' + B) + SB(A' + A) | Associative +<br>Distributive |
| = S'A 1 + SB 1             | X + X' = 1                    |
| = S'A + SB                 | X + 1 = X                     |

#### **Multiplexer Implementation**

#### C = S'A + SB



#### N-Input Multiplexer

Suppose we want to select from between N different inputs.

 This requires more than one select line. How many?



#### N-Input Multiplexer

How many select lines?

•  $M = \log_2 N$ 

or

•  $N = 2^{M}$ 

What would the N=8 implementation look like?


# More Complicated Multiplexers

- Assume that you have a simple multiplexer (1 select line / 2 inputs)
- How do you create a multiplexer with 2 select lines and 4 inputs?



#### 8-Input Multiplexer Implementation

 $I_{3}S'_{2}S_{1}S_{0+}I_{4}S_{2}S'_{1}S'_{0} + I_{5}S_{2}S'_{1}S_{0} +$  $I_6S_2S_1S'_0 + I_7S_2S_1S_0$ Note that we have one of each possible select line combination (or addressing terms)

# Demultiplexer

- The multiplexer reduces
  N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
  - Which A depends on the select lines



# Demultiplexer

- The multiplexer reduces
  N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
  - Which A depends on the select lines



# Demultiplexer

- The multiplexer reduces
  N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
  - Which A depends on the select lines



# **Demultiplexer Notes**

- The symbol that we use is the same as for the multiplexer
  - Select lines are still inputs
  - But the other inputs and outputs are reversed
- Multiplexer or demultiplexer in a circuit: you must infer this from the labels or from the rest of the circuit
  - When in doubt, ask

# Demultiplexer Truth Table

| S | D | A <sub>1</sub> | A <sub>0</sub> |
|---|---|----------------|----------------|
| 0 | 0 |                |                |
| 0 | 1 |                |                |
| 1 | 0 |                |                |
| 1 | 1 |                |                |



# Demultiplexer Truth Table

| S | D | A <sub>1</sub> | A <sub>0</sub> |
|---|---|----------------|----------------|
| 0 | 0 | 0              | 0              |
| 0 | 1 | 0              | 1              |
| 1 | 0 | 0              | 0              |
| 1 | 1 | 1              | 0              |



### Demultiplexer Algebraic Specification

| S | D | A <sub>1</sub> | A <sub>0</sub> |
|---|---|----------------|----------------|
| 0 | 0 | 0              | 0              |
| 0 | 1 | 0              | 1              |
| 1 | 0 | 0              | 0              |
| 1 | 1 | 1              | 0              |



### Demultiplexer Algebraic Specification



### Demultiplexer Algebraic Specification



# **Demultiplexer Circuit**

$$A_0 = S'D$$
$$A_1 = SD$$

### **Demultiplexer Circuit**



### 2-Input Demultiplexer

# Here, "input" refers to the number of select lines



### 2-Input Demultiplexer Truth Table

| S <sub>1</sub> | S <sub>0</sub> | D | A <sub>3</sub> | A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> |
|----------------|----------------|---|----------------|----------------|----------------|----------------|
| 0              | 0              | 0 | 0              | 0              | 0              | 0              |
| 0              | 0              | 1 | 0              | 0              | 0              | 1              |
| 0              | 1              | 0 | 0              | 0              | 0              | 0              |
| 0              | 1              | 1 | 0              | 0              | 1              | 0              |
| 1              | 0              | 0 | 0              | 0              | 0              | 0              |
| 1              | 0              | 1 | 0              | 1              | 0              | 0              |
| 1              | 1              | 0 | 0              | 0              | 0              | 0              |
| 1              | 1              | 1 | 1              | 0              | 0              | 0              |

# **Demultiplexer Implementation**

• What does it look like?



# **Another Implementation**

- Assume that you have a simple demultiplexer (1 select line / 2 outputs)
- How do you create a demultiplexer with 2 select lines and 4 outputs?

- Until now: the output line(s) of each device are driven either high or low
  - So the line is either a source or a sink of current
- Tristate buffers can do this or leave the line floating (as if it were not connected to anything)

| S | A | B        |
|---|---|----------|
| 0 | 0 | floating |
| 0 | 1 | floating |
| 1 | 0 | 0        |
| 1 | 1 | 1        |



# How are tristate buffers useful?

We can wire the outputs of multiple tristate buffers together without any other logic



- We must guarantee that only one select line is active at any one time
- Tristate buffers will turn out to be useful when we start building data and address buses

### Another Tristate Buffer



#### What does the truth table look like?

# Another Tristate Buffer

| S | A | B        |
|---|---|----------|
| 0 | 0 | 0        |
| 0 | 1 | 1        |
| 1 | 0 | floating |
| 1 | 1 | floating |

