
Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

1

Last Time

Analog Circuits Review
• Voltage
• Amperage
• Resistance
• Capacitance

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

2

Today

• A bit more on analog circuits
– RC circuits
– Transistors

• Analog to digital circuits
– Transistors to basic logic gates
– Introduction to Boolean Algebra
– Connecting digital circuits to Boolean Algebra

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

3

Administrivia

Homework 1 will be delayed by a lecture

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

4

Encoding Information

In your ‘circuits and sensors’ class: how did
you encode information?

• e.g., the acceleration measured by your
accelerometer?

• or the rate of bend of a piezoelectric
device?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

5

Encoding Information

• Acceleration (or bend rate) is encoded in
the voltage that is output from the circuit

• As acceleration increases, the voltage also
increases

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

6

Encoding Information

• Acceleration (or bend rate) is encoded in
the voltage that is output from the circuit

• As acceleration increases, the voltage also
increases

• We say that this is an analog or
continuous encoding of the information

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

7

Analog Encoding

What is the problem with analog encoding?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

8

Analog Encoding

What is the problem with analog encoding?
• Small injections of noise – either in the

sensor itself or from external sources – will
affect this analog signal

• This leads to errors in how we interpret the
sensory data

How do we fix this?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

9

Digital Encoding

How do we fix this?
• At any instant, a single signal encodes one

of two values:
– A voltage around 0 (zero) Volts is interpreted

as one value
– A voltage around +5 V is interpreted as

another value

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

10

Binary Encoding

• Binary digits can have one of two values: 0
or 1

• We call 0V a binary “0” (or FALSE)
• And +5V a binary “1” (or TRUE)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

11

Binary Encoding

• Exactly what these levels are depends on
the technology that is used (it is common
now to see +1.8V as a binary 1 in low-
power processors)

• This encoding is much less sensitive to
noise: small changes in voltage do not
affect how we interpret the signal

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

15

Transistors

What do transistors do for us?
• In general: they act as current amplifiers

• But: we can use them as electronic
switches to process digital signals

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

16

Transistors to Digital Processing

Consider the following circuit:
• What is the output given an input of 0V?
• An input of +5V?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

17

Transistors to Digital Processing

• Input: 0V -> Output +5V
• Input: +5V -> Output 0V

• We call this a “NOT” gate

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

19

The NOT Gate

• Logical Symbol:

• Algebraic Notation: B = A

• Truth Table:

01

10
BA

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

20

A Two-Input Gate

What does this
circuit compute?

- A and B are inputs
- C is the output

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

22

The “NAND” Gate

011
101
110
100
CBA

• Logical Symbol:

• Algebraic Notation: C = A*B = AB

• Truth Table:

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

23

The “AND” Gate

111
001
010
000
CBA

• Logical Symbol:

• Algebraic Notation: C = A*B = AB

• Truth Table:

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

24

Yet Another Gate

What does
this circuit
compute?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

26

The “NOR” Gate

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

011
001
010
100
CBA

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

27

The “OR” Gate

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

111
101
110
000
CBA

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

28

N-Input Gates

Gates can have an
arbitrary number of
inputs (2,3,4,8,16 are
common)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

29

Last Time

• Transistors to Logic Gates
• 3 ways of specifying logical computation:

– Circuit (gates): AND, OR, NOT
– Algebra
– Truth Tables

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

30

Today

• Building more complicated logic circuits
• Algebraic manipulation and circuit

reduction

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

31

Exclusive OR (“XOR”) Gates

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

011
101
110
000
CBA How would we

implement this
with
AND/OR/NOT
gates?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

32

An XOR Implementation

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

33

An Example
Problem: implement an alarm system
• There are 3 inputs:

– Door open (“1” represents open)
– Window open
– Alarm active (“1” represents active)

• And one output:
– Siren is on (“1” represents on) when either the door or

window are open – but only if the alarm is active

What is the truth table?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

34

Alarm Example: Truth Table

1111
0011
1101
0001
1110
0010
0100
0000

SirenAWD

+

+

D W A

D W A

D W A

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

35

Alarm Example: Circuit

Siren = D W A + D W A + D W A

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

36

Alarm Example: Circuit

Is a simpler circuit possible?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

37

Alarm Example: Truth Table

1111
0011
1101
0001
1110
0010
0100
0000

SirenAWD

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

38

Alarm: An Alternative Circuit

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

42

Alarm Example: Truth Table

1111
0011
1101
0001
1110
0010
0100
0000

SirenAWD

+

+

D W A

D W A

D W A

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

43

Alarm Example: Truth Table

1111
0011
1101
0001
1110
0010
0100
0000

SirenAWD

+

+

D W A

D W A

D W A

“minterm”

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

44

Minterms

• AND containing all function inputs
– in our example these are D, W, A

• Some of the inputs may be “NOT’ed”

• Called a “minterm” because the AND is
– 1 for exactly one case, and
– 0 otherwise

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

45

Minterm Approach to Representing
a Truth Table/Function

• OR together a set of minterms:
– One minterm for each row for which the

output is 1

• Example:
Siren = D W A + D W A + D W A

• Circuit is correct, but may not be smallest

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

46

Boolean Algebra

• There are exactly two numbers in Boolean
System: “0” and “1”

• You are already familiar with the
“integers”: {… -2, -1, 0, 1, 2, …}
(and Integer Algebra)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

47

Boolean Algebra

• Like the integers, Boolean Algebra has the
following operators:

NOTnegationinverse

ANDproduct*

ORaddition+

BooleanIntegers

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

48

NOT Operator

Definition:
• 0 = 0’ = 1
• 1 = 1’ = 0

Suppose that “X” is a Boolean variable,
then:

• X = X’’ = X

NOTE: this is identical to our truth
table (just a slightly different
notation)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

49

OR (+) Operator

Definition:

• 0+0 = 0
• 0+1 = 1
• 1+0 = 1
• 1+1 = 1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

50

OR (+) Operator

Suppose “X” is a Boolean variable, then:

• 0 + X = X
• 1 + X = 1
• X + X = X
• X + X’ = 1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

51

AND (*) Operator

Definition:

• 0*0 = 0
• 0*1 = 0
• 1*0 = 0
• 1*1 = 1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

52

AND (*) Operator

Suppose “X” is a Boolean variable, then:

• 0 * X = 0
• 1 * X = X
• X * X = X
• X * X’ = 0

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

53

Boolean Algebra Rules:
Precedence

The AND operator applies before the OR
operator:

A * B + C = (A * B) + C

A + B * C = A + (B * C)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

54

Boolean Algebra Rules:
Association Law

If there are several AND operations, it does
not matter which order they are applied in:

A * B * C = (A * B) * C = A * (B * C)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

55

Boolean Algebra Rules:
Association Law

Likewise for the OR operator:

A + B + C = (A + B) + C = A + (B + C)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

56

Boolean Algebra Rules:
Distributive Law

AND distributes across OR:

A * (B + C) = (A * B) + (A * C)

A + (B * C) = (A + B) * (A + C)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

57

Boolean Algebra Rules:
Commutative Law

Both AND and OR are symmetric operators
(the order of the variables does not
matter):

A + B = B + A

A * B = B * A

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

59

DeMorgan’s Laws

(A * B)’ = A’ + B’

How do we convince ourselves that this is
true?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

60

Proof by Truth Table

0011

1101

1110

1100

A’ + B’(A * B)’BA

NOTE:
change in
the NOT
notation

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

61

DeMorgan’s Laws (cont)

(A + B)’ = A’ * B’

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

62

Proof by Truth Table

0011

0001

0010

1100

A’ * B’(A + B)’BA

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

63

Alarm Example: Truth Table

1111
0011
1101
0001
1110
0010
0100
0000

SirenAWD

+

+

D’ W A

D W’ A

D W A

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

64

Reduction with Algebra

X + X’ = 1= 1* W A + 1* DA

Assoc +Dist
Laws

= (D’ + D) WA + (W’ + W) DA

“= D’ WA + DWA + W’DA + WDA

Commutative
Law

= D’ WA + DWA + DW’A + DWA

X + X = X= D’ W A + D W’ A + DWA + DWA

D’ W A + D W’ A + DWA

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

65

Reduction with Algebra (cont)

Distributive
Law

= (W + D) * A

X * 1 = X= WA + DA

1* W A + 1* DA

We have the same circuit as before!

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

115

Last Time
• Truth Tables
• Basic logic gates: AND, OR, NOT
• Introduction to Boolean Algebra

– Minterms
– Precedence: AND before OR
– Laws: Commutative, Associative, and

Distributive
– Identities
– DeMorgan’s Laws

• Boolean Algebra to Circuits (and back)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

116

Circuit Design Process

• Start with a truth table
• Convert to “minterms” algebraic

representation
• Simplify using Boolean Algebra
• Translate into circuit diagram

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

117

Administrivia

• Homework 1 due in one week

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

118

Today

• Multiplexers
• Demultiplexers
• Tri-state Buffers

• Circuit design practice

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

119

Multiple Output Variables

Suppose we have a function with multiple
output variables?

• How do we handle this?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

120

Multiple Output Variables

How do we handle this?
• One algebraic expression for each output

• But: in the final implementation, some sub-
circuits may be shared

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

121

More Logical Components

• Multiplexer
• Demultiplexer
• Tristate buffer

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

122

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

123

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1 =0

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

124

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1 =1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

125

Multiplexer Truth Table

What does the
algebraic
expression look
like?

1111
0011
1101
0001
1110
1010
0100
0000
CBAS

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

126

Multiplexer Truth Table

1111
0011
1101
0001
1110
1010
0100
0000
CBAS

S’AB’
S’AB

SA’B

SAB

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

127

Multiplexer

C = S’AB’ + S’AB + SA’B + SAB

Is there a simpler expression?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

128

Reduction with Algebra

X + 1 = X= S’A + SB

X + X’ = 1= S’A 1 + SB 1

Associative +
Distributive

= S’A(B’ + B) + SB(A’ + A)

S’AB’ + S’AB + SA’B + SAB

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

133

Multiplexer Implementation

C = S’A + SB

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

134

N-Input Multiplexer

Suppose we want to
select from between
N different inputs.

• This requires more
than one select line.
How many?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

135

N-Input Multiplexer

How many select lines?

• M = log2N
or

• N = 2M

What would the N=8
implementation look
like?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

138

More Complicated Multiplexers

• Assume that you have a
simple multiplexer (1 select
line / 2 inputs)

• How do you create a
multiplexer with 2 select
lines and 4 inputs?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

139

8-Input Multiplexer Implementation

C = I0S’2S’1S’0 + I1S’2S’1S0 + I2S’2S1S’0 +
I3S’2S1S0 + I4S2S’1S’0 + I5S2S’1S0 +
I6S2S1S’0 + I7S2S1S0

Note that we have one of each
possible select line combination
(or addressing terms)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

141

Demultiplexer

• The multiplexer reduces
N signals down to 1 (with
M select lines)

• A demultiplexer routes a
data input (D) to one of N
output lines (As)
– Which A depends on the

select lines

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

142

Demultiplexer

• The multiplexer reduces
N signals down to 1 (with
M select lines)

• A demultiplexer routes a
data input (D) to one of N
output lines (As)
– Which A depends on the

select lines

=0

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

143

Demultiplexer

• The multiplexer reduces
N signals down to 1 (with
M select lines)

• A demultiplexer routes a
data input (D) to one of N
output lines (As)
– Which A depends on the

select lines

=1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

144

Demultiplexer Notes
• The symbol that we use is

the same as for the
multiplexer
– Select lines are still inputs
– But the other inputs and

outputs are reversed
• Multiplexer or demultiplexer

in a circuit: you must infer
this from the labels or from
the rest of the circuit
– When in doubt, ask

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

145

Demultiplexer Truth Table

11
01
10
00

A0A1DS

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

146

Demultiplexer Truth Table

0111
0001
1010
0000

A0A1DS

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

147

Demultiplexer Algebraic
Specification

0111
0001
1010
0000

A0A1DS

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

148

Demultiplexer Algebraic
Specification

0111
0001
1010
0000

A0A1DS

A0 = S’D

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

149

Demultiplexer Algebraic
Specification

0111
0001
1010
0000

A0A1DS

A0 = S’D
A1 = SD

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

150

Demultiplexer Circuit

A0 = S’D
A1 = SD

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

151

Demultiplexer Circuit

A0 = S’D
A1 = SD

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

155

2-Input Demultiplexer

Here, “input” refers to the
number of select lines

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

156

2-Input Demultiplexer
Truth Table

0001111
0000011
0010101
0000001
0100110
0000010
1000100
0000000

A0A1A2A3DS0S1

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

157

Demultiplexer Implementation

• What does it look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

158

Demultiplexer
Implementation

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

159

Another Implementation

• Assume that you have a simple
demultiplexer (1 select line / 2 outputs)

• How do you create a demultiplexer with 2
select lines and 4 outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

161

Tristate Buffers

• Until now: the output line(s) of each device
are driven either high or low
– So the line is either a source or a sink of

current
• Tristate buffers can do this or leave the

line floating (as if it were not connected to
anything)

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

162

Tristate Buffers

111

001

floating10

floating00

BAS

How are tristate
buffers useful?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

163

Tristate Buffers

We can wire the outputs of
multiple tristate buffers
together without any other
logic

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

164

Tristate Buffers

• We must guarantee that only one select
line is active at any one time

• Tristate buffers will turn out to be useful
when we start building data and address
buses

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

165

Another Tristate Buffer

What does the truth table look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Digital Logic

166

Another Tristate Buffer

floating11

floating01

110

000

BAS

