Control of Time-Varying Behavior

Proportional-Derivative (PD) controller: react
to the Immediate sensory inputs

 E.g.: yaw control
 Need a reference (or “desired”) heading

Where does this reference come from?

Andrew H. Fagg: Embedded Real- 11
Time Systems: FSMs

Control of Time-Varying Behavior

Where does the reference come from?

 Determined by what our task is (or
subtask)

e E.g.: at the current state of a mission, it
may be appropriate to orient the craft in a
particular direction so that it can fly back
“home”

Andrew H. Fagg: Embedded Real- 12
Time Systems: FSMs

Control of Time-Varying Behavior

Can often express a “mission” in terms of a
sequence of sub-tasks (or a plan)

e But: we also want to handle contingencies
when they arrive

Finite state machines are a simple way of
expressing such plans and contingencies

Andrew H. Fagg: Embedded Real- 13
Time Systems: FSMs

Finite State Machines (FSMs)

Pure FSM form Is composed of:

* A set of states

* A set of possible inputs (or events)

* A set of possible outputs (or actions)

e A transition function:

— Given the current state and an input: defines
the output and the next state

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

14

Finite State Machines (FSMs)

States:

 Represent all possible “situations” that
must be distinguished

e At any given time, the system is in exactly
one of the states

e There Is a finite number of these states

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

15

Finite State Machines (FSMs)

An example: our synchronous counter
e States: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

16

Finite State Machines (FSMs)

An example: our synchronous counter

e States: the different combinations of the
digits: 000, 001, 010, ... 111

e |nputs: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

17

Finite State Machines (FSMs)

An example: our synchronous counter

e |nputs:

— Really only one: the event associated with the
clock transitioning from high to low

— We will call this “C”

e Outputs: ?

Andrew H. Fagg: Embedded Real- 18
Time Systems: FSMs

Finite State Machines (FSMs)

An example: our synchronous counter
o Outputs: same as the set of states

e Transition function: ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

19

Finite State Machines (FSMs)

An example: our synchronous counter

 Transition function:

— On the clock event, transition to the next state
In the sequence

Andrew H. Fagg: Embedded Real- 20
Time Systems: FSMs

FSM Example:
Synchronous Counter

A Graphical Representation:

(1)

A Set Of States Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

21

FSM Example:
Synchronous Counter

A trapsition

(1)

Andrew H. Fagg: Embedded Real- 22
Time Systems: FSMs

FSM Example:
Synchronous Counter

A transition

o

The event

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

23

FSM Example:
Synchronous Counter

A transition

The output

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

24

FSM Example:
Synchronous Counter

The next transition

C/010
C

C/001

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

25

FSM Example:
Synchronous Counter

The next transition

C/010 C/011

010
Cl— ()
C/001

Andrew H. Fagg: Embedded Real- 26
Time Systems: FSMs

FSM Example:
Synchronous Counter

The full transition set

C/010 C/011

010
C— > (@)

@ @
C/111 < cho

Andrew H. Fagg: Embedded Real- 27
Time Systems: FSMs

FSM Example:
Synchronous Counter

Inltlal condition

C/010 C/011

010
x/OOO —> -5
C/001 \

C/OOO
(e

cni1r < cho

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

28

Example Il: An Up/Down Counter

Suppose we have two events (instead of
one):. Count up and count down

 How does this change our state transition
diagram?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

29

Example Il: An Up/Down Counter

From state 000, there are now two possible

transitions
®

U/001

\D/l 11

(1)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

30

Example Il: An Up/Down Counter

Likewise for state 001...

U/001
D/000

N
()

U/010

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

31

Example Il: An Up/Down Counter

The full transition set

U/010 U/011

010
(00) —— T ——= ()

o V D/001 D/010 U/100
D/111 @
D/100
U/101

U/000
~ D/110 /101
@
U/111 " U/110

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

32

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

36

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

e |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

37

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are ?

Andrew H. Fagg: Embedded Real- 38
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are the control actions

Andrew H. Fagg: Embedded Real- 39
Time Systems: FSMs

FSMs: A Control Example

Suppose we have a vending machine:
e Accepts dimes and nickels

» Will dispense one of two things once $.20 A&
has been entered: Jolt or Buzz Water

— The “user” requests one of these by pressing [E
a button —

 |gnores select if < $.20 has been entered
* Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real- 43
Time Systems: FSMs

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

44

Vending Machine FSM

What are the states?
« 30

e $.05

¢ $.10

¢ $.15

¢ $.20

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

45

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

46

Vending Machine FSM

What are the inputs/events?
 Input nickel (N)

 Input dime (D)

o Select Jolt (J)

e Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

47

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

48

Vending Machine FSM

What are the outputs?
Return nickel (RN)
Return dime (RD)
Dispense Jolt (DJ)
Dispense Buzz Water (DBW)
Nothing (Z)

Andrew H. Fagg: Embedded Real- 49
Time Systems: FSMs

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

50

Vending Machine Design

What is the nitial state?
e S=%0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

51

Vending Machine Design

What can happen from Event

S =%07?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

52

Vending Machine Design

What can happen from
S =3%$07?

What does this part of
the diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.05 Z
D $.10 Z
J $0 Z
BW $0 Z

Time Systems: FSMs

53

Vending Machine Design

A piece of the state diagram:

\ N/Z ‘
J/7 D/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

54

Vending Machine Design

What can happen from Event

S = $0.05?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

55

Vending Machine Design

What can happen from
S =$0.057

What does the modified
diagram look like?

Andrew H. Fagg: Embedded Real-

Event | Next | Output
State
N $.10 Z
D $.15 Z
J $.05 Z
BW $.05 Z

Time Systems: FSMs

56

Vending Machine Design
A piece of the state diagram:
é’vzwz()
\ 'Z/ —

\

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

57

Vending Machine Design

What can happen from Event

S =%0.107

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

58

Vending Machine Design

What can happen from
S =%$0.107?

Event | Next | Output
State
N $.15 Z
D $.20 Z
J $.10 Z
BW $.10 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

59

Vending Machine Design

A piece of the state diagram:

J/iZ
BW/Z O

“”\/

J/Z
BW/zZ

J/Z
BW/Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

60

Vending Machine Design

What can happen from Event

S =$0.15?

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

61

Vending Machine Design

What can happen from
S =$%$0.157

Event | Next | Output
State
N $.20 Z
D $.20 RN
J $.15 Z
BW $.15 Z

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

62

Vending Machine Design

A piece of the state diagram:

N7 N7
BW/Z O O BW/Z

\ 59 |
A%

J/Z
BW/Z

J/Z
BW/zZ

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

63

Vending Machine Design

Finally: what can

happen from S =

$0.207?

Event

Next
State

Output

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

64

Vending Machine Design

Finally, what can

happen from S =

$0.207?

Event | Next | Output
State
N $.20 RN
D $.20 RD
J $0
BW $0

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

Vending Machine Design

The complete state diagram:
JB’VZWZQ Q awiz
\ /Z/v

CM

J/iZ
BW/Z

J/Z

BW/zZ

N/Z
D/RN N/RN
D/RD

J/DJ

BW / DBW

Andrew H. Fagg: Embedded Real- 66
Time Systems: FSMs

Project Group Exercise

Design a FSM for control of the sonar
 What are the states?

 \What are the events?

 What are the actions?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

67

Project 4

Sonar FSM hints:

e Remember that the overflow ISR Is called
at regular intervals

« Each call to your ISR:

— Depending on the current FSM state, you will:
e Check the time on a clock
e Check the input from the sonar
« Generate an output to the sonar

Andrew H. Fagg: Embedded Real- 68
Time Systems: FSMs

ISR Trap: Shared Data Problem

Andrew H. Fagg: Embedded Real- 69
Time Systems: FSMs

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

70

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

J/DJ

BW / DBW

71

Today

* Implementation of finite state machines In
code

Homework 4 due next Tuesday
Project 4 due a week from Tuesday

Note: | am out of town next week (but
accessible via email)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

12

FSMs and Control

How do we relate FSMs to Control?
e States are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

73

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

e |nputs are ?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

74

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are ?

Andrew H. Fagg: Embedded Real- 75
Time Systems: FSMs

FSMs and Control

How do we relate FSMs to Control?
e States are our memory of recent inputs

 Inputs are some processed representation
of what the sensors are observing

e Outputs are the control actions

Andrew H. Fagg: Embedded Real- 76
Time Systems: FSMs

A Robot Control Example

Consider the following task:

e The robot Is to move toward the first
beacon that it “sees”

e The robot searches for a beacon in the
following order: right, left, front

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 77
Time Systems: FSMs

Robot Control Example Il

Consider the following task:

 The robot must lift off to some altitude
 Translate to some location

e Take pictures

e Return to base

 Land

e At any time: a detected failure should cause the
craft to land

What is the FSM representation?

Andrew H. Fagg: Embedded Real- 81
Time Systems: FSMs

FSMs As Controllers

 Need code that translates sensory inputs
iInto FSM events

 An FSM output can require an arbitrary
amount of time
— We will often implement this control action as
a separate function call
e Control actions will not necessarily be
fixed (but could be a function of sensory
iInput)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

82

FSMs As Controllers (cont)

e \We might choose to leave some events
out of the Implementation

— Only some events may be relevant to certain
states
 When In a state, the FSM may also issue

control actions (even when a new event
has not arrived)

— Again, this may be implemented as a function
call

Andrew H. Fagg: Embedded Real- 83
Time Systems: FSMs

FSMs In C

Int state = 0O; // Initial state
while(1l) {
<do some processing of the sensory
switch(state) {
case O:
<handle state 0>
break;
case 1:
<handle state 1>
break;
case 2:

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

inputs>

84

FSMs In C

Int state = 0O; // Initial state
whi
<do some proce
switch(state) {

case O:
<handle state 0>

tng of the sensory i1nputs>

1break; Variable

case 1: |

<handle state 1> Fie_qlqrat|pn and
break; Initialization

case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

85

FSMs In C

i 5 = 0; // Initial state

arocessing of the sensory i1nputs>
switch(state
case O:
<handle state
break;
case 1:
<handle state 1>
break;
case 2: ..

Loop forever

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

86

FSMs In C

INt state = 0O; // Initial state

while(l
<§§§g;%;§7processing of the sensory inputs>>

switch(state)y =<
case O:
<handle state 0>
break; “pseudo code”:
case 1: t really code
<handle state 1> no _ _ y ,
break; but indicates what
case 2: .. IS to be done
+
+
Andrew H. Fagg: Embedded Real- 87

Time Systems: FSMs

FSMs In C

INt state = 0O; // Initial state

while(l
<§§§g;%;§7processing of the sensory inputs>>

switch(state)y—=<
case O: : :
<handle state 0> In this case: we will
break; translate the
case 1:h N . current sensory
<nan e state > .]
break: Inputs into 6_1
case 2- representation of
} an event (if one
¥ has happened)
Andrew H. Fagg: Embedded Real- 88

Time Systems: FSMs

FSMs In C

INt state = 0O; // Initial state

while(1) {
<do_same processing of the sensory inputs>
! case O: ! \ .
<handle state 0> Switch/case syntax
break; allows us to cleanly
case 1:h N . perform many
<nan e state > 1% —_— ” 1
break - If(x==y)” operations
case 2: .
}
}

Andrew H. Fagg: Embedded Real- 89
Time Systems: FSMs

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>

switch(state) {
case 0:)

<handle state 0> If state==0, then
break; execute the

case 1: following code
<handle state 1>
break;

case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

90

FSMs In C

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O: _
@;'f state 055 This code can be as
break; complex as

case 1: necessary
<handle state 1>
break;

case 2: ..

}
¥
Andrew H. Fagg: Embedded Real- 91

Time Systems: FSMs

FSMs In C

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O: :
<hand SW break says to exit

Cbreak; the switch (don’t
case 1: forget it or strange

<handle state 1>
break;
case 2: ..

things can happen!)

Andrew H. Fagg: Embedded Real- 92
Time Systems: FSMs

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:

(E?se 1E:>

<handle state 1>
break;
case 2: ..

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

<handle state If state==1, then ...
break;

93

FSMs In C

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:
<handle state 0>
break;
case 1:

End of the switch
block

e state 1>

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

94

FSMs in C (some other
possibilities)

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O:
<handle state 0>
break;
defaul t:
<handle default case>
break;
¥
<do some low-level control>
¥

Andrew H. Fagg: Embedded Real- 105
Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = O; // Initial state
while(1l) {
<do some processing of the sensory Inputs>
switch(state) {
case O:

<handle state 0> Matches any state
break; : :
: / (If we reach this
poin)
<handle default case>

break;
<do some low-level control>
Andrew H. Fagg: Embedded Real- 106

Time Systems: FSMs

FSMs in C (some other
possibilities)

int state = O; // Initial state

while(1l) {
<do some processing of the sensory Inputs>
switch(state) {

case O:
<handle state 0> (pOSSlbly) alter
break;
: some control
default: outputs (e.g.,
<handle default gase> gtaaring direction)
break;
)5
(Eggsome low-level contréj}Z)
+
Andrew H. Fagg: Embedded Real- 107

Time Systems: FSMs

Handling Each State

* You will need to provide code that handles
the event processing for each state

e Specifically:
— You need to handle each event that can occur

— For each event, you must specify:
 What action is to be taken
 What the next state Is

Andrew H. Fagg: Embedded Real- 108
Time Systems: FSMs

Handling Each State

In our vending machine example:

 Events are easy to describe (only a few
things can happen)

e |t IS convenient in this case to also “switch”
on the event

Andrew H. Fagg: Embedded Real- 109
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {
case EVENT NICKEL: // Nickel
state = STATE 15cents; // Transition to $.15
break;
case EVENT DIME: // Dime
state = STATE 20cents; // Transition to $.2
break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display NOT_ENOUGHQ);
break;

case EVENT_NONE: // No event
break; // Do nothing

¥

break;

Andrew H. Fagg: Embedded Real- 110
Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:

// $. zs—already been deposited
A MT NNCKEL: // Nickel

state QTATE _15cents; // Transition to $.15
break;

case EVENT DIME: // Dwge
state = STATE 20cems; // Transition to $.2

break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwate

display_ NOT_ENOUGHQ);

break: Another integer
case EVENT_NONE: // No event
break; // Do nothing
}:
break;
Andrew H. Fagg: Embedded Real- 111

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has

2 event) {

case EVENT_NICKEL:

state = STAT

break;

case EVENT DIME: // Dime
state = STATE_20cents;
break;

case EVENT JOLT: // Select Jolt

case EVENT BUZZ: // Select Buzzwater

eposited

// Nickel

; // Transition to $.15

Transition to $.2

display_NOT_ENOUGH(Q); .
case EVENT_NONE: // No event been recelved
break; // Do nothing
}:
break;
Andrew H. Fagg: Embedded Real- 112

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {

—NTCKEL: /7Nt
state = STATE_15cents; / ransition to $.15
break;

- e
state = STATE 20cents; /AJTransition to $.2
break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display_ NOT_ENOUGHQ);
break;

case

Change state for

case EVENT_NONE: // No event

break; /7 0o nothing Next iteration of
o the while() loop
Andrew H. Fagg: Embedded Real- 113

Time Systems: FSMs

FSMs in C: Processing for
Individual States

case STATE_ 10cents:
// $.10 has already been deposited
switch(event) {
case EVENT NICKEL: // Nickel
state = STATE 15cents; // Transition to $.15
break;
case EVENT DIME: // Dime
= // Transition to $.2

break;
case EVENT JOLT: // Select Jolt
case EVENT BUZZ: // Select Buzzwater
display_ NOT_ENOUGHQ);
break;

If any of these
match, then execute
the following code

case EVENT_ NONET 77 NO event _ _
break; // Do nothing (WhICh does nOth|ng
}; In this example)
break;
Andrew H. Fagg: Embedded Real- 114

Time Systems: FSMs

Handling Each State

Some events do not fall neatly into one of several
categories

e This precludes the use of the “switch” construct

 For example: an event that occurs when our hel
reaches a goal orientation or a goal height

* For these continuous situations, we typically use
an “If” construct:

1T(heading error < 20 && heading error > -20){.}

Andrew H. Fagg: Embedded Real- 115
Time Systems: FSMs

A Note on “Style” In C

The numbers that we assigned to the
different states are arbitrary (and at first
glance, hard to interpret)

Instead, we can define constant strings
that have some meaning

Replace: 0,1, 2, 3,4,5
With: STATE_00, STATE_05, STATE_10,

S

ATE 15, STATE 20

Andrew H. Fagg: Embedded Real- 116
Time Systems: FSMs

A Note on “Style” In C

In C, this Is done by adding some
definitions to the beginning of your
program (either in the .c file or the .h

file):

#define STATE OOcents
#define STATE O5cents
#define STATE_10cents
#define STATE_ 15cents
#define STATE_20cents

Andrew H. Fagg: Embedded Real-

A WNPEFEO

Time Systems: FSMs

117

Shared Data Problem

Necessary conditions (In our context):

e Both the main program and an ISR share global
variables

 The variable(s) is larger than one byte

The problem:

 The main program starts to access a variable &
IS then interrupted by the ISR

 The ISR changes the variable
 The main program “sees” a corrupted value

Andrew H. Fagg: Embedded Real- 118
Time Systems: FSMs

Shared Data Problem

The solution (in the main program):

 Disable the interru
— E.g., timer0_disab

Ots
e()

e Access the sharec

variables

e Enable the Interrupts

— E.g., timer0_enab

e()

Note: do not leave interrupts disabled for
very long (no loops or waits!)

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

119

Tasks for Today

 FSM for sonar control and processing
 FSM modifications for the “mission”
(note that these are two different FSMs!)

Andrew H. Fagg: Embedded Real- 120
Time Systems: FSMs

Project Group Exercise

Design a FSM for control of the sonar
 What are the states?

 \What are the events?

 What are the actions?

Andrew H. Fagg: Embedded Real-
Time Systems: FSMs

121

Project 4

Sonar FSM hints:

e Remember that the overflow ISR Is called
at regular intervals

e Each call to your ISR:

— Depending on the current FSM state, you will:
e Check the time on a clock
e Check the input from the sonar
« Generate an output to the sonar

 No need for the while(1){} loop!

Andrew H. Fagg: Embedded Real- 122
Time Systems: FSMs

