Last Time

- Circuit Reduction and Boolean Algebra
- Multiplexers
- Demultiplexers
- Tri-state buffers

Today

- Finish circuit reduction example
- Dealing with time and memory

• Homework 1: due on Thursday

Time

Until now: we have essentially ignored the issue of time

- We have assumed that our digital logic circuits perform their computations instantaneously
- Our digital logic circuits have been "stateless"
 - Once you present a new input, they forget everything about previous inputs
 - We call this type of digital system **combinatorial logic**

Time

In reality, time is an important issue:

- Even our logic gates induce a small amount of delay (on the order of a few nanoseconds)
- For much of what we do we actually want our circuits to have some form of memory

low

D Flip Flops

D Flip Flops

D Flip Flops

When the clock transitions from high to low: the value of D is stored

D Flip Flop

Q

An Application of D Flip Flops

What does this circuit do?

Shift Register

On each clock transition from high to low:

- X0 takes on the current value of D
- X1 <- X0

Another D Flip Flop Circuit

How does this circuit behave?

Another D Flip Flop Circuit

How does this circuit behave?

Frequency Divider

Q flips state on every downward edge of the clock

A Bit About Binary Encoding

If a boolean variable can only encode two different values, how do we represent a larger number of values?

How do we represent a larger number of values?

How do we represent a larger number of values?

 As with our decimal number system: we concatenate binary digits (or "bits") into strings

- The first (rightmost) bit is the 1's digit
- The second bit is the 2's digit
- The ith bit is the 2ⁱ⁻¹ 's digit

Last Time

Sequential Logic

- D Flip Flops
- Shift registers
- Binary number system

Today

- A little more on number systems
- Use of flip-flops
- Microprocessor basics
 - Memory
 - Arithmetic Logical Units
 - Instructions and execution

Administrivia

- Homework 1 due today at 5:00
- Homework 2 available tonight

How do we convert from binary to decimal in general?

B2	B1	B0	decimal	
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

Binary to Decimal Conversion $value = B_0 + B_1 * 2^1 + B_2 * 2^2 + B_3 * 2^3 + \dots$

$$value = \sum_{i=0}^{N-1} B_i * 2^i$$

How do we convert from decimal to binary?

Decimal to Binary Conversion $\forall i: B_i \leftarrow 0$

while(value $\neq 0$)

ł

Find i suchthat $2^{i+1} > value \ge 2^{i}$ $B_i \leftarrow 1$ value $\leftarrow value - 2^{i}$

Binary Counter

How would we build a circuit that counts the number of clock ticks that have gone by?

Binary Counter

How would we build a circuit that counts the number of clock ticks that have gone by?

Insight:

- B1 changes state at half the frequency that B0 does
- B2 changes state at half the frequency of B1

Ripple Counter

The carry "ripples" down the chain ...

Ripple Counter Notes

- The bits do not change state at the same time
- This can be repaired with a more sophisticated circuit design
 - We will experiment with this in hw2

Flip-Flop Notes

- Means of storing 'bits' of data
- Have now seen two circuits that operate on sets of 'bits' (or binary numbers)
 - Counter
 - Shift register
 - What arithmetic operation does shifting perform?
- These are examples of operations that are performed by the "Arithmetic Logical Unit"