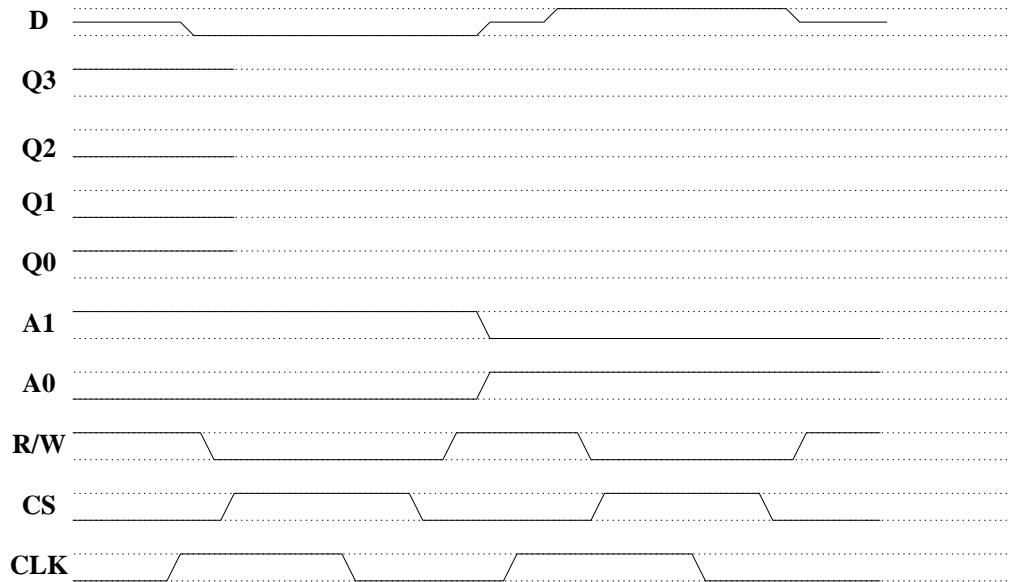


Embedded Real-Time Systems (AME 3623)

Homework 2

February 11, 2010

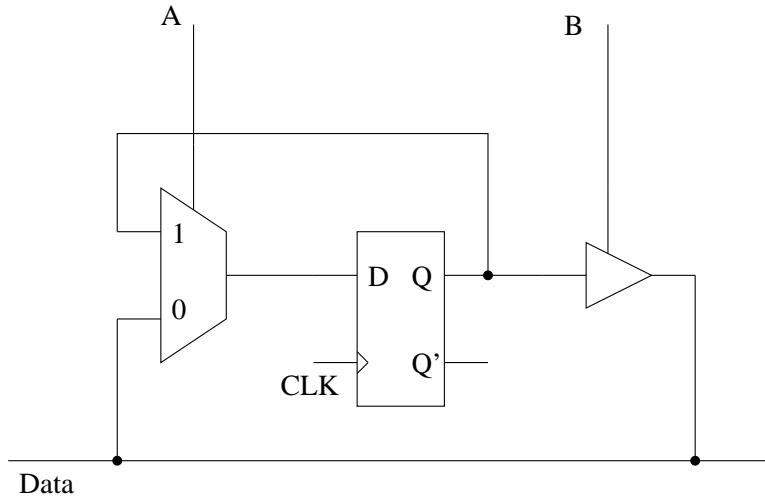

This homework assignment is due on Tuesday, February 16th in class (9:00 am). Your work may be handed in electronically (use the **Homework 2** digital dropbox on D2L), but please bring a hardcopy to class.

This assignment must be done individually: do not share/discuss your answers with others or look at the answers of others.

Question 1

(10pts) Consider the four-element memory “chip” that we discussed in class (each element is “one bit wide”). Given the following timing diagram, fill in the missing traces (Q_0 , Q_1 , Q_2 , and Q_3).

Hint: first re-examine the rules for writing to and reading from a memory chip.


Question 2

(10pts) Consider the same four-element memory chip. Given the following timing diagram, fill in the missing traces (D , $Q0$, $Q1$, $Q2$, and $Q3$).

Question 3

The following circuit is a partial implementation of a 1-bit memory sitting on the data bus *Data*.

1. (10pts) Suppose that Q is initially set to 1. If $A = 1$, $B = 0$, $Data = 0$ and the clock transitions from high to low, what happens to Q and when?
2. (10pts) Suppose that Q is initially set to 1. If $A = 1$, $B = 1$ and the clock transitions from high to low, what happens to Q and $Data$, and when?

3. (10pts) Suppose that Q is initially set to 1. If $Data = 0$, $A = 0$, $B = 0$ and the clock transitions from high to low, what happens to Q , and when?
4. (10pts) Generally, what is the meaning of B ?

5. (10pts) Assume memory control signals in the previous problems (CS , R/W , $A1$, and $A0$), and that this is memory element number 3 (counting from 0). Give the truth table for B . Note: the *Data* wire on this question corresponds to the lines labeled “D” on questions 1 and 2.

CS	R/W	$A1$	$A0$	B
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

6. (10pts) Design a circuit that implements B .

Question 5

How much time did you spend on this assignment?