

Embedded Real-Time Systems (AME 3623)

Homework 2 Solutions

March 3, 2010


Question 1

(10pts) Consider the four-element memory “chip” that we discussed in class (each element is “one bit wide”). Given the following timing diagram, fill in the missing traces (Q_0 , Q_1 , Q_2 , and Q_3).

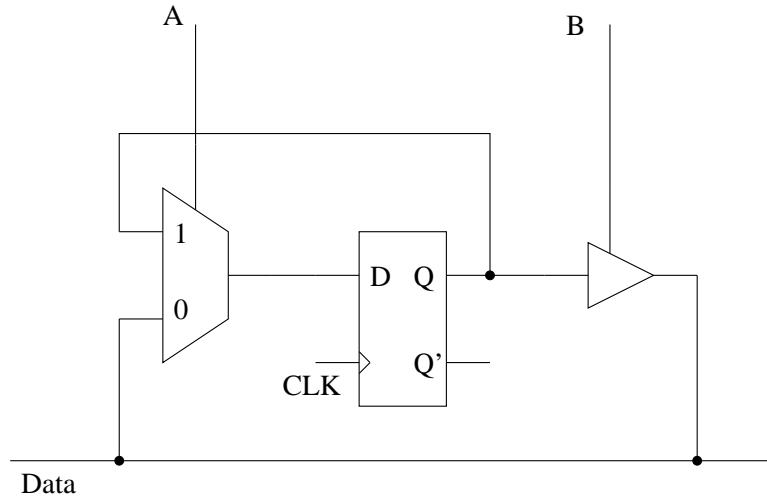
Hint: first re-examine the rules for writing to and reading from a memory chip.

Both memory accesses are write operations; they affect the state of Q_2 and Q_1 , respectively (but only when the clock transitions from high to low). However, the state of Q_2 does not change since it already has a value of 0.

(answer is shown in bold)

Question 2

(10pts) Consider the same four-element memory chip. Given the following timing diagram, fill in the missing traces (D , $Q0$, $Q1$, $Q2$, and $Q3$).


Both of these operations are read operations of elements $Q0$ and $Q1$. None of the memory elements change state. The data bus is driven during the entire time that the chip select line is high.

(answer is shown in bold)

Question 3

The following circuit is a partial implementation of a 1-bit memory sitting on the data bus *Data*.

1. (10pts) Suppose that Q is initially set to 1. If $A = 1$, $B = 0$, $Data = 0$ and the clock transitions from high to low, what happens to Q and when?

Because the multiplexer is selecting the Q input (back to D), the flip-flop does not change state.

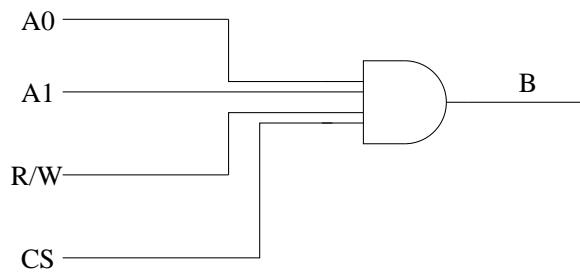
2. (10pts) Suppose that Q is initially set to 1. If $A = 1$, $B = 1$ and the clock transitions from high to low, what happens to Q and $Data$, and when?

Because the multiplexer is selecting the Q input, then the flip-flop does not change state. $Data$ is driven to a state of 1 by the tristate buffer as long as $B = 1$.

3. (10pts) Suppose that Q is initially set to 1. If $Data = 0$, $A = 0$, $B = 0$ and the clock transitions from high to low, what happens to Q , and when?

Because $A = 0$, $Data$ is selected as the input to the flip-flop. Therefore, when the clock changes from high to low, Q becomes 0

4. (10pts) Generally, what is the meaning of B ?


When B is high, this memory element drives the bus. In other words: we are doing a **read** operation **from** the memory element.

5. (10pts) Assume memory control signals in the previous problems (CS , R/W , $A1$, and $A0$), and that this is memory element number 3 (counting from 0). Give the truth table for B . Note: the $Data$ wire on this question corresponds to the lines labeled “D” on questions 1 and 2.

B is high when we are doing a read operation from element 3 of the 4-element memory. In order for this to occur, we must have: $CS = 1$, $R/W = 1$, and $A1, A0 = 11$. All other rows are zero, which indicates no driving of the data bus from our memory element.

CS	R/W	$A1$	$A0$	B
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

6. (10pts) Design a circuit that implements B .

(note: we will have a slightly different circuit for each of the other memory elements).