Last Time

- Resistors
- Ohm's Law
- Digital to analog conversion
- Binary numbers

Today

- R-C Circuits
- Digital Circuits

What is the Gate?

• Logical Symbol:

- Algebraic Notation:
- Truth Table:

А	В
0	
1	

The NOT Gate

• Logical Symbol:

- Algebraic Notation: B = A
- Truth Table:

А	В
0	1
1	0

And This Gate?

• Logical Symbol:

• Algebraic Notation: C = ?

• Truth Table:

А	В	С
0	0	
0	1	
1	0	
1	1	

The "AND" Gate

• Logical Symbol:

• Algebraic Notation: $C = A^*B = AB$

• Truth Table:

А	В	C
0	0	0
0	1	0
1	0	0
1	1	1

And This Gate?

• Logical Symbol:

• Algebraic Notation: C = ?

• Truth Table:

А	В	С
0	0	
0	1	
1	0	
1	1	

The "OR" Gate

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

А	В	C
0	0	0
0	1	1
1	0	1
1	1	1

N-Input Gates

Gates can have an arbitrary number of inputs (2,3,4,8,16 are common)

Andrew H. Fagg: Embedded Real-Time Systems: Digital Logic 11

An Example

Problem: implement an alarm system

- There are 3 inputs:
 - Door open ("1" represents open)
 - Window open
 - Alarm active ("1" represents active)
- And one output:
 - Siren is on ("1" represents on) when either the door or window are open – but only if the alarm is active

What is the truth table?

Alarm Example: Truth Table

D	W	A	Siren	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	🔶 D W A
1	0	0	0	+
1	0	1	1	I → D W A
1	1	0	0	+
1	1	1	1	DWA 🔶

Alarm Example: Truth Table

Time Systems: Digital Logic

17

Alarm Example: Circuit

Is a simpler circuit possible?

NOT Operator

Definition:

- $\overline{0} = 0' = 1$
- $\overline{1} = 1' = 0$

NOTE: this is identical to our truth table (just a slightly different notation)

Suppose that "X" is a Boolean variable, then:

• $\overline{\overline{X}} = X'' = X$

OR (+) Operator

Definition:

- 0+0 = 0
- 0+1 = 1
- 1+0 = 1
- 1+1 = 1

OR (+) Operator

Suppose "X" is a Boolean variable, then:

- 0 + X = X
- 1 + X = 1
- X + X = X
- X + X' = 1

AND (*) Operator

Definition:

- $0^*0 = 0$
- 0*1 = 0
- 1*0 = 0
- 1*1 = 1

AND (*) Operator

Suppose "X" is a Boolean variable, then:

- 0 * X = 0
- 1 * X = X
- X * X = X
- X * X' = 0

Boolean Algebra Rules: Precedence

The AND operator applies before the OR operator:

$$A * B + C = (A * B) + C$$

 $A + B * C = A + (B * C)$

Boolean Algebra Rules: Association Law

If there are several AND operations, it does not matter which order they are applied in:

A * B * C = (A * B) * C = A * (B * C)

Boolean Algebra Rules: Association Law

Likewise for the OR operator:

$$A + B + C = (A + B) + C = A + (B + C)$$

Boolean Algebra Rules: Distributive Law

AND distributes across OR:

$$A * (B + C) = (A * B) + (A * C)$$

$$A + (B * C) = (A + B) * (A + C)$$

Boolean Algebra Rules: Commutative Law

Both AND and OR are symmetric operators (the order of the variables does not matter):

$$A + B = B + A$$

A * B = B * A

Back to our Alarm Example

D	W	A	Siren	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1] → D' W A
1	0	0	0	+
1	0	1	1] →→ D W' A
1	1	0	0	+
1	1	1	1	DWA

Reduction with Algebra

Reduction with Algebra (cont)

We have a much smaller circuit!

Multiple Output Variables

How do we handle this?

- One algebraic expression for each output
- But: in the final implementation, some subcircuits may be shared

More Logical Components

- Multiplexer
- Demultiplexer
- Tristate buffer

2-Input Multiplexer

- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1

2-Input Multiplexer

- A multiplexer is a device that selects between two input lines
- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1

2-Input Multiplexer

- A multiplexer is a device that selects between two input lines
- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1

Multiplexer Truth Table

Andrew H. Fagg: Embedded Real-Time Systems: Digital Logic

What does the algebraic expression look like?

Multiplexer Truth Table

Multiplexer

C = S'AB' + S'AB + SA'B + SAB

Is there a simpler expression?

Reduction with Algebra

S'AB' + S'AB + SA'B + SAB	
= S'A(B' + B) + SB(A' + A)	Associative + Distributive
= S'A 1 + SB 1	X + X' = 1
= S'A + SB	X + 1 = X

Multiplexer Implementation

C = S'A + SB

N-Input Multiplexer

Suppose we want to select from between N different inputs.

 This requires more than one select line. How many?

N-Input Multiplexer

How many select lines?

• $M = \log_2 N$

or

• $N = 2^{M}$

What would the N=8 implementation look like?

Demultiplexer

- The multiplexer reduces
 N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
 - Which A depends on the select lines

Demultiplexer

- The multiplexer reduces
 N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
 - Which A depends on the select lines

Demultiplexer

- The multiplexer reduces
 N signals down to 1 (with M select lines)
- A demultiplexer routes a data input (D) to one of N output lines (As)
 - Which A depends on the select lines

Demultiplexer Notes

- The symbol that we use is the same as for the multiplexer
 - Select lines are still inputs
 - But the other inputs and outputs are reversed
- Multiplexer or demultiplexer in a circuit: you must infer this from the labels or from the rest of the circuit
 - When in doubt, ask

Demultiplexer Truth Table

S	D	A ₁	A ₀
0	0		
0	1		
1	0		
1	1		

Demultiplexer Truth Table

S	D	A ₁	A ₀
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Demultiplexer Algebraic Specification

S	D	A ₁	A ₀
0	0	0	0
0	1	0	1
1	0	0	0
1	1	1	0

Demultiplexer Algebraic Specification

Demultiplexer Algebraic Specification

Demultiplexer Circuit

$$A_0 = S'D$$
$$A_1 = SD$$

Demultiplexer Circuit

2-Input Demultiplexer

Here, "input" refers to the number of select lines

- Until now: the output line(s) of each device are driven either high or low
 - So the line is either a source or a sink of current
- Tristate buffers can do this or leave the line floating (as if it were not connected to anything)

S	A	B
0	0	floating
0	1	floating
1	0	0
1	1	1

How are tristate buffers useful?

We can wire the outputs of multiple tristate buffers together without any other logic

- We must guarantee that only one select line is active at any one time
- Tristate buffers will turn out to be useful when we start building data and address buses

Another Tristate Buffer

What does the truth table look like?

Another Tristate Buffer

S	A	B
0	0	0
0	1	1
1	0	floating
1	1	floating

