
Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

1

Timing of Events

Suppose that we want produce a pulse on a
digital line that was exactly 500 ms in
length?

• What would the code look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

2

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

3

Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;

This will work, but why is it undesirable?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

4

Timing of Events

This will work, but why is it undesirable?

delay_ms() is implemented by using a
for() loop

• The microcontroller can’t do anything else
while it is looping

• Have to loop a precise number of times
(not always easy to do)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

5

Timing of Events: Another Example

Suppose we would want to measure the
width of a pulse. How would we
implement this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

6

Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while(PINB & 0x1 == 0){};

// Now count until it goes low
for(counter = 0; PINB & 0x1; ++counter)
{
delay_ms(1);

}
// Now: counter is the width of
// of the pulse in ms

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

7

Timing of Events: Another Example

Again: the program cannot be doing
anything else while it is waiting

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

8

Counter/Timers in the Mega8

The mega8 incorporates three counter/timer
devices in hardware. The mega2560 has
these + 3 more

These can:
• Be used to count the number of events

that have occurred (either external or
internal)

• Act as a clock

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

9

Timer 0

• Possible input sources:
– Pin T0 (PD4)
– System clock

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to

0x0, an interrupt (an event) can be
generated (more on this next time)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

10

Generic Timer Implementation
• Prescaler:

divides clock
frequency

• Multiplexer:
selects one of
the inputs to
drive the counter

• Counter:
increment on
low-to-high
transition of its
input

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

11

Timer 0 (and Timer 1)

Possible prescalers:
• 8
• 64
• 256
• 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

12

Timing Example

Suppose:
• f=16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to

156

How long does this take?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

13

Timer 0 Example

mssdelay 109948
000,000,16
156*1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

14

Timer 0 Code Example
timer0_config(TIMER0_PRE_1024); // Init: Prescale by 1024

timer0_set(0); // Set the counter to 0

<Do something else for a while>
while(timer0_read() < 156) {

<Do something while waiting>
};

// Break out of while loop after ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

15

Timer 0 Example

Advantage over delay_ms():
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of
instructions to be executed

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

16

Timer 0 Example

One caution:
• “something else” cannot take very much

time

(we have a solution for this – coming soon!)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

17

Next Example

How do we time a delay of 100 usecs?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

18

Next Example

How do we time a delay of 100 usecs?

1600
16000000*0001.
_*0001.*

 freqclockprescalecounts

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

19

Next Example

How do we time a delay of 100 usecs?

160064*25

16008*200
1600

16000000*0001.
_*0001.*

OR

freqclockprescalecounts

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

20

Timer 0 Code Example
timer0_config(TIMER0_PRE_8); // Init: Prescale by 1024

timer0_set(0); // Set the timer to 0

<Do something else for a while>
while(timer0_read() < 200) {

<Do something while waiting>
};

// Break out of while loop after ~100 us

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

21

Skip to interrupts…

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

22

Example 3:
Timing the Width of a Pulse

• Input: port B, pin 1
• How long is the pin high?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

23

Timing a Pulse Width: Our Original
Implementation

// Wait for pin to go high
while(PINB & 0x1 == 0){};

// Now count until it goes low
for(counter = 0; PINB & 0x1; ++counter)
{
delay_ms(1);

}
// Now: counter is the width of
// of the pulse in ms

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

24

Example: Timing a Pulse Width
// Init: Prescale by 1024
timer0_config(TIMER0_PRE_1024);

// Wait for pin to go high
while(PINB & 0x2 == 0){

<Do something while waiting>
};
timer0_set(0); // Set the timer to 0

while((PINB & 0x2) != 0) {
<Do something while waiting>

};
pulse_width = timer0_read();

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

25

Example: Timing a Pulse Width

What is the “resolution” of pulse_width?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

26

Example: Timing a Pulse Width

What is the “resolution” of pulse_width?
• Each “tock” is:

sdelay 64
000,000,16

1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

27

Example: Timing a Pulse Width

So, with pulse_width tocks:

swidthpulsewidthpulsedelay _*64
000,000,16
_*1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

28

Example: Timing a Pulse Width
// Init: Prescale by 1024
timer0_config(TIMER0_PRE_1024);

// Wait for pin to go high
while(PINB & 0x2 == 0){

<Do something while waiting>
};
timer0_set(0); // Set the timer to 0

while((PINB & 0x2) != 0) {
<Do something while waiting>

};
pulse_width = read_timer0();

Note: the longer
“something”
takes, the larger
the possible
error in timing

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

29

Other Timers Besides Timer 0

Timers 1, 3, 4, 5:
• 16 bit counter
• Prescalers: 1, 8, 64, 256, 1024

Timer 2:
• 8 bit counter
• Prescalers: 1, 8, 32, 64, 128, 256, 1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

30

Note

See oulib documentation for the list of
possible prescalers for the timers

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

31

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

32

Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes a small
piece of code called: interrupt handler or
interrupt service routine (ISR)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

33

Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

34

Interrupt Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

35

An Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

36

An Example

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

37

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

38

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

39

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

40

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

41

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

42

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

43

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

44

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

45

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

46

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

47

Interrupt Routines
Generally a very small number of

instructions
• We want a quick response so the

processor can return to what it was
originally doing

• No delays, waits, or floating point
operations in the ISR…

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

48

Timer 0 Interrupt

We can configure the timer to generate an
interrupt every time that the timer’s
counter “rolls over” from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

49

Timer 0 Interrupt Example

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

50

Timer 0 Example

msinterval 384.16
000,000,16
256*1024

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

51

Timer 0
Interrupt Service Routine (ISR)

An ISR is a type of function that is called
when the interrupt is generated

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

52

Timer 0
Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30
2*256*1024

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

53

Example I:
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

54

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
• PB0 state is altered asynchronously from

what is happening in the main program

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

55

Next Example: Timer 0 Example II

msinterval 384.16
000,000,16
256*1024

How many interrupts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

56

Timer 0 Example II

0352.61
384.16

1000

ms
mscounts

How many interrupts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

57

Example II: Interrupt Service
Routine (ISR)

ISR(TIMER0_OVF_vect) {
static uint8_t counter = 0;
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

58

Example II: Interrupt Service
Routine (ISR)

uint8_t counter = 0;

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

Example II: Initialization
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

60

Timer 0 Example II

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

61

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0
2*61*256*1024

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

62

• Skip to PWM

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

63

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

• prescaler (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

64

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

65

Information Encoding

Many different options for encoding
information for transmission to/from other
devices:

• Parallel digital
• Serial digital (Project 2)
• Analog: use voltage to encode a value

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

66

Information Encoding

An alternative: pulse-width modulation
(PWM)

• Information is encoded in the time
between the rising and falling edge of a
pulse

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

67

PWM Example:

RC Servo Motors
• 3 pins: power (red),

ground (black), and
command signal (white)

• Signal pin expects a
PWM signal

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

68

PWM Example

Internal circuit translates pulse width into a goal
position:

• 0.5 ms: 0 degrees
• 1.5 ms: 180 degrees

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

69

RC Servo Motors

• Internal potentiometer measures the
current orientation of the shaft

• Uses a Position Servo Controller: the
difference between current and
commanded shaft position determines
shaft velocity.

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited

rotation

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

70

PWM Example II:
Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

71

Controlling LED Brightness

What is the relationship of current flow
through an LED and the rate of photon
emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

72

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

73

Controlling LED Brightness
Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

74

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

75

Controlling LED Brightness

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

76

Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

counter
• When the counter is 0, turn the LED on
• When the counter reaches some

“duration”, turn the LED off

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

77

Our Implementation I
volatile uint8_t duty = 0;

ISR(TIMER0_OVF_vect)
{
static uint8_t counter = 255;

++ counter;
if(counter == 0) PORTC |= 4; // bit 2 high
if(counter >= duty) PORTC &= ~4; // b2 low

};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

78

Our Implementation II

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

79

Another Implementation I
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

++counter;
if(counter >= duration)

PORTB &= ~1;
else if(counter == 0)

PORTB |= 1;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

80

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

81

Initialization
int main(void) {

DDRC = 0x04;
PORTC = 0;

duration = 0;

// Interrupt configuration
timer0_config(TIMER0_PRE8); // Prescaler = 8

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

82

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

83

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

st 16
16000000

256

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

84

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

85

PWM Implementation

What is the period of the pulse?
• The 8-bit software counter expires every 256

interrupts

mst 096.4
16000000

256*256

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

86

Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i)
duration = i;
delay_ms(50);

};
};

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

87

ISR Example III
ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

}; What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

88

Timer 0 Example III

What is the flash frequency?

KHzfrequency 9.3
2*256*8

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

89

ISR Example III:
How about this case?

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;
timer0_set(128);

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

};
What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

90

Timer 0 Example III

What is the flash frequency?

KHzfrequency 8.7
2*128*8

000,000,16

Hint: key trick for project 3

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

91

3 Different Timers

• Timer 0
• Timer 1
• Timer 2

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

92

Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short

also
– Minimize looping
– No “printf()”

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

93

Interrupts, Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

94

Shared Data and Compiler
Optimizations

For example:
A = A + 1;
C = B * A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

95

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

96

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A; // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

97

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

98

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

99

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

100

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

101

Pulse-Width Modulation in Hardware

• The Atmel Mega processors will perform a
wide-range of timing functions in hardware

• This includes the generation of pulse-width
modulated signals

• Once configured, your main program need
only to set the duty cycle of the PWM
signal

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

102

Pulse-Width Modulation in Hardware

• Configuration includes:
– Signal frequency (through the prescalers)
– Signal polarity (high then low or vice-versa)
– Resolution for specifying the duty cycle

• Use:
– You need only specify changes to the duty

cycle

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

103

PWM on the Atmel Mega2560s

Timers 1, 3, 4, 5: each have 3 PWM output channels
associated with them (known as A, B, and C)

For our example here:
• Use 10 bits of the 16 available with the counter
• Counter counts from 0 to 1023, and then back to 0
• Output goes high at 0
• Output goes low at specified count

– Specified by the “output compare” register

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

104

Initialization Example (Timer 4)
int main(void){

// The timer 4 channel A pin is labeled “OC4A” on the Arduino
// circuit diagram
DDRH = 0x8;

// tocks/sec = 2,000,000/sec (with a 16,000,000 ticks/sec clock)
timer4_config(TIMER4_PRE_8);

// Configure for 10-bit PWM
timer4_output_compare_config(TIMER4_OUTPUT_COMPARE_CONFIG_PWM_F_10);

// Configure timer 4, channel A for PWM: high then low

timer4_compare_output_A_mode_set(TIMER16B_COMPARE_OUTPUT_MODE_CLEAR);
:
:

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

105

Use Example
:
:
int16_t i;

// Loop forever
while(1) {

// Slowly increase the duty cycle on channel A
for(i=0; i < 1024; ++i) {

timer4_output_compare_A_set(i);
delay_ms(1);

};

// Slowly bring the duty cycle back to zero
for(i=1023; i > 0; --i) {

timer4_output_compare_A_set(i);
delay_ms(1);

};
};

Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

106

See examples_2560/pwm for more details

