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Timing of Events

Suppose that we want produce a pulse on a 
digital line that was exactly 500 ms in 
length?

• What would the code look like?
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Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;
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Timing of Events

// Assume it is pin 0 of port B

PORTB = PORTB | 1;
delay_ms(500);
PORTB = PORTB & ~1;

This will work, but why is it undesirable?
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Timing of Events

This will work, but why is it undesirable?

delay_ms() is implemented by using a 
for() loop

• The microcontroller can’t do anything else 
while it is looping

• Have to loop a precise number of times 
(not always easy to do)
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Timing of Events: Another Example

Suppose we would want to measure the 
width of a pulse.  How would we 
implement this?
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Timing of Events: Another Example

How would we implement this?
// Wait for pin to go high
while(PINB & 0x1 == 0){};

// Now count until it goes low
for(counter = 0; PINB & 0x1; ++counter)
{
delay_ms(1);

}
// Now: counter is the width of
//   of the pulse in ms
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Timing of Events: Another Example

Again: the program cannot be doing 
anything else while it is waiting
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Counter/Timers in the Mega8

The mega8 incorporates three counter/timer 
devices in hardware.  The mega2560 has 
these + 3 more

These can:
• Be used to count the number of events 

that have occurred (either external or 
internal)

• Act as a clock
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Timer 0

• Possible input sources:
– Pin T0 (PD4)
– System clock 

• Potentially divided by a “prescaler”

• 8-bit counter
• When the counter turns over from 0xFF to 

0x0, an interrupt (an event) can be 
generated (more on this next time)



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

10

Generic Timer Implementation
• Prescaler: 

divides clock 
frequency

• Multiplexer: 
selects one of 
the inputs to 
drive the counter

• Counter: 
increment on 
low-to-high 
transition of its 
input
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Timer 0 (and Timer 1)

Possible prescalers: 
• 8
• 64
• 256
• 1024
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Timing Example

Suppose:
• f=16MHz clock
• Prescaler of 1024
• We wait for the timer to count from 0 to 

156

How long does this take?



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

13

Timer 0 Example

mssdelay 109948
000,000,16
156*1024
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Timer 0 Code Example
timer0_config(TIMER0_PRE_1024);   // Init: Prescale by 1024

timer0_set(0);       // Set the counter to 0

<Do something else for a while>
while(timer0_read() < 156) {

<Do something while waiting>
};

// Break out of while loop after ~10 ms

See Atmel HOWTO for example code (timer_demo2.c)
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Timer 0 Example

Advantage over delay_ms(): 
• Can do other things while waiting
• Timing is much more precise

– We no longer rely on a specific number of 
instructions to be executed
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Timer 0 Example

One caution: 
• “something else” cannot take very much 

time

(we have a solution for this – coming soon!)
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Next Example

How do we time a delay of 100 usecs?
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Next Example

How do we time a delay of 100 usecs?

1600
16000000*0001.
_*0001.*




 freqclockprescalecounts
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Next Example

How do we time a delay of 100 usecs?

160064*25

16008*200
1600

16000000*0001.
_*0001.*









OR

freqclockprescalecounts
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Timer 0 Code Example
timer0_config(TIMER0_PRE_8);   // Init: Prescale by 1024

timer0_set(0);       // Set the timer to 0

<Do something else for a while>
while(timer0_read() < 200) {

<Do something while waiting>
};

// Break out of while loop after ~100 us
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Skip to interrupts…
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Example 3: 
Timing the Width of a Pulse

• Input: port B, pin 1
• How long is the pin high?
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Timing a Pulse Width: Our Original 
Implementation

// Wait for pin to go high
while(PINB & 0x1 == 0){};

// Now count until it goes low
for(counter = 0; PINB & 0x1; ++counter)
{
delay_ms(1);

}
// Now: counter is the width of
//   of the pulse in ms



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

24

Example: Timing a Pulse Width
// Init: Prescale by 1024
timer0_config(TIMER0_PRE_1024); 

// Wait for pin to go high
while(PINB & 0x2 == 0){

<Do something while waiting>
};
timer0_set(0);       // Set the timer to 0

while((PINB & 0x2) != 0) {
<Do something while waiting>

};
pulse_width = timer0_read();
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Example: Timing a Pulse Width

What is the “resolution” of pulse_width?
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Example: Timing a Pulse Width

What is the “resolution” of pulse_width?
• Each “tock” is:

sdelay 64
000,000,16

1024
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Example: Timing a Pulse Width

So, with pulse_width tocks:

swidthpulsewidthpulsedelay _*64
000,000,16
_*1024
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Example: Timing a Pulse Width
// Init: Prescale by 1024
timer0_config(TIMER0_PRE_1024); 

// Wait for pin to go high
while(PINB & 0x2 == 0){

<Do something while waiting>
};
timer0_set(0);       // Set the timer to 0

while((PINB & 0x2) != 0) {
<Do something while waiting>

};
pulse_width = read_timer0();

Note: the longer 
“something” 
takes, the larger 
the possible 
error in timing
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Other Timers Besides Timer 0

Timers 1, 3, 4, 5: 
• 16 bit counter
• Prescalers: 1, 8, 64, 256, 1024

Timer 2:
• 8 bit counter
• Prescalers: 1, 8, 32, 64, 128, 256, 1024
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Note

See oulib documentation for the list of 
possible prescalers for the timers
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Interrupts

• Hardware mechanism that allows some 
event to temporarily interrupt an ongoing 
task

• The processor then executes a small 
piece of code called: interrupt handler or 
interrupt service routine (ISR)

• Execution then continues with the original 
program
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Some Sources of Interrupts
(Mega8)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter 

completes its conversion
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Interrupt Example
Suppose we are executing code 

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
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An Example
Suppose we are executing code 

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Suppose we are executing code 
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
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An Example

PC

Suppose we are executing code 
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3
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An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

remember this location



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

39

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI
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An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC
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An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC
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An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC
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Interrupt Routines
Generally a very small number of 

instructions
• We want a quick response so the 

processor can return to what it was 
originally doing

• No delays, waits, or floating point 
operations in the ISR…
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Timer 0 Interrupt

We can configure the timer to generate an 
interrupt every time that the timer’s 
counter “rolls over” from 0xFF to 0x00
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Timer 0 Interrupt Example

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?
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Timer 0 Example

msinterval 384.16
000,000,16
256*1024
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Timer 0 
Interrupt Service Routine (ISR)

An ISR is a type of function that is called 
when the interrupt is generated

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?
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Timer 0 
Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30
2*256*1024

000,000,16
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Example I: 
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts 
sei();

while(1) {
// Do something else

};
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Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry 

about timing at all
• PB0 state is altered asynchronously from 

what is happening in the main program
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Next Example: Timer 0 Example II

msinterval 384.16
000,000,16
256*1024



How many interrupts do we need so that we 
toggle the state of PB0 every second?
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Timer 0 Example II

0352.61
384.16

1000


ms
mscounts

How many interrupts do we need so that we 
toggle the state of PB0 every second?

We will assume 61 is close enough.
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Example II: Interrupt Service 
Routine (ISR)

ISR(TIMER0_OVF_vect) {
static uint8_t counter = 0;
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
//  This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code 
(timer_demo.c)
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Example II: Interrupt Service 
Routine (ISR)

uint8_t counter = 0;

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
//  This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code 
(timer_demo.c)



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

59

Example II: Initialization 
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts 
sei();

while(1) {
// Do something else

};
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Timer 0 Example II

What is the flash frequency?



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

61

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0
2*61*256*1024

000,000,16
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• Skip to PWM
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Interrupts and Timers

Timing can often involve a cascade of 
multiple counters:

• prescaler (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency 
division
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Information Encoding

Many different options for encoding 
information for transmission to/from other 
devices:

• Parallel digital 
• Serial digital (Project 2)
• Analog: use voltage to encode a value



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

66

Information Encoding

An alternative: pulse-width modulation 
(PWM)

• Information is encoded in the time 
between the rising and falling edge of a 
pulse
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PWM Example:

RC Servo Motors
• 3 pins: power (red), 

ground (black), and 
command signal (white)

• Signal pin expects a 
PWM signal
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PWM Example

Internal circuit translates pulse width into a goal 
position:

• 0.5 ms: 0 degrees
• 1.5 ms: 180 degrees
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RC Servo Motors

• Internal potentiometer measures the 
current orientation of the shaft

• Uses a Position Servo Controller: the 
difference between current and 
commanded shaft position determines 
shaft velocity. 

• Mechanical stops limit the range of motion
– These stops can be removed for unlimited 

rotation
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PWM Example II: 
Controlling LED Brightness

What is the relationship of current flow 
through an LED and the rate of photon 
emission?
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Controlling LED Brightness

What is the relationship of current flow 
through an LED and the rate of photon 
emission?

• They are linearly related (essentially)
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Controlling LED Brightness

Suppose we pulse an LED for a given period 
of time with a digital signal: what is the 
relationship between pulse width and 
number of photons emitted?



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

73

Controlling LED Brightness
Suppose we pulse an LED for a given period of 

time with a digital signal: what is the relationship 
between pulse width and number of photons 
emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human 
eye will not be able to detect the flashes
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Controlling LED Brightness

We need:
• To produce a periodic behavior, and 
• A way to specify the pulse width (or the 

duty cycle)

How do we implement this in code?
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Controlling LED Brightness

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit 

counter
• When the counter is 0, turn the LED on
• When the counter reaches some 

“duration”, turn the LED off
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Our Implementation I
volatile uint8_t duty = 0;

ISR(TIMER0_OVF_vect)
{
static uint8_t counter = 255;

++ counter;
if(counter == 0) PORTC |= 4;  // bit 2 high
if(counter >= duty) PORTC &= ~4;  // b2 low

};
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Our Implementation II
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Another Implementation I
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

++counter;
if(counter >= duration)

PORTB &= ~1;
else if(counter == 0)

PORTB |= 1;

}
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Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?
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Initialization
int main(void) {

DDRC = 0x04;
PORTC = 0;

duration = 0;

// Interrupt configuration
timer0_config(TIMER0_PRE8);  // Prescaler = 8

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

:
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PWM Implementation

What is the resolution (how long is one 
increment of “duration”)?
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PWM Implementation

What is the resolution (how long is one increment 
of “duration”)?

• The timer0 counter (8 bits) expires every 256 
clock cycles

(assuming a 16MHz clock)

st 16
16000000

256
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PWM Implementation

What is the period of the pulse?
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PWM Implementation

What is the period of the pulse?
• The 8-bit software counter expires every 256 

interrupts

mst 096.4
16000000

256*256
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Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i) 
duration = i;
delay_ms(50);

};
};

}
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ISR Example III
ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

}; What is the flash frequency?
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Timer 0 Example III

What is the flash frequency?

KHzfrequency 9.3
2*256*8

000,000,16
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ISR Example III: 
How about this case?

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;
timer0_set(128);

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

};
What is the flash frequency?
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Timer 0 Example III

What is the flash frequency?

KHzfrequency 8.7
2*128*8

000,000,16


Hint: key trick for project 3
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3 Different Timers

• Timer 0
• Timer 1
• Timer 2
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Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short 

also
– Minimize looping
– No “printf()”

• Communication with the main program 
using global variables 
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Interrupts, Shared Data 
and Compiler Optimizations

• Compilers (including ours) will often 
optimize code in order to minimize 
execution time

• These optimizations often pose no 
problems, but can be problematic in the 
face of interrupts and shared data
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Shared Data and Compiler 
Optimizations

For example:
A = A + 1;
C = B * A

Will result in ‘A’ being fetched from memory 
once (into a general-purpose register) –
even though ‘A’ is used twice
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Shared Data and Compiler 
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?
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Shared Data and Compiler 
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in code that looks something like this:

R1 = A;  // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!
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Shared Data and Compiler 
Optimizations

This optimization is generally fine – but 
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}
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Shared Data and Compiler 
Optimizations

This optimization is generally fine – but 
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this
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Shared Data and Compiler 
Optimizations

The fix: the programmer must tell the 
compiler that it is not allowed to assume 
that a memory location is not changing

• This is accomplished when we declare the 
global variable:

volatile uint8_t A;
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Pulse-Width Modulation in Hardware

• The Atmel Mega processors will perform a 
wide-range of timing functions in hardware

• This includes the generation of pulse-width 
modulated signals

• Once configured, your main program need 
only to set the duty cycle of the PWM 
signal



Andrew H. Fagg: Embedded Real-
Time Systems: Timers/Counters

102

Pulse-Width Modulation in Hardware

• Configuration includes:
– Signal frequency (through the prescalers)
– Signal polarity (high then low or vice-versa)
– Resolution for specifying the duty cycle

• Use:
– You need only specify changes to the duty 

cycle
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PWM on the  Atmel Mega2560s

Timers 1, 3, 4, 5: each have 3 PWM output channels 
associated with them (known as A, B, and C)

For our example here: 
• Use 10 bits of the 16 available with the counter
• Counter counts from 0 to 1023, and then back to 0
• Output goes high at 0
• Output goes low at specified count

– Specified by the “output compare” register
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Initialization Example (Timer 4)
int main(void){

// The timer 4 channel A pin is labeled “OC4A” on the Arduino 
//   circuit diagram
DDRH = 0x8;

// tocks/sec = 2,000,000/sec (with a 16,000,000 ticks/sec clock)
timer4_config(TIMER4_PRE_8);

// Configure for 10-bit PWM
timer4_output_compare_config(TIMER4_OUTPUT_COMPARE_CONFIG_PWM_F_10);

// Configure timer 4, channel A for PWM: high then low

timer4_compare_output_A_mode_set(TIMER16B_COMPARE_OUTPUT_MODE_CLEAR);
:
:
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Use Example
:
:
int16_t i;

// Loop forever
while(1) {

// Slowly increase the duty cycle on channel A
for(i=0; i < 1024; ++i) {

timer4_output_compare_A_set(i);
delay_ms(1);

};

// Slowly bring the duty cycle back to zero
for(i=1023; i > 0; --i) {

timer4_output_compare_A_set(i);
delay_ms(1);

};
};
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See examples_2560/pwm for more details


