
Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

1

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

2

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal
• Analog
• Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

3

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle

• Resolution: ~.5 degrees, 1
cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

4

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

5

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Typically, each side has a clock to tell it
when to write/read a bit

• In some cases, the sender will also send a
clock signal (on a separate line)

• In other cases, the sender/receiver will first
synchronize their clocks before transfer
begins

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

6

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

7

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that data
is coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

8

A Typical Data Frame

The start bit indicates that a byte is coming

9

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

10

Data Frame Handling

Most of the time, we do not personally deal
with the data frame level. Instead, we rely
on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

14

One Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -15

(-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

20

RS232 on the Mega2560
Our mega 8 has FOUR Universal,

Asynchronous serial
Receiver/Transmitters (UARTs):

• Each handles all of the bit-level
manipulation

• You only have to interact with it on the
byte level

• Uses 0V and 5V to encode “lows” and
“highs”
– Must convert if talking to a true RS232C

device (+/- 13V)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

21

Mega2560 UART C Interface
OUlib support:
fp = serial_init_buffered(1, 9600, 40, 40)

Initialize port one for a transmission rate of 9600 bits per
second (input and output buffers are both 40 characters
long)

serial_buffered_input_waiting(fp)
Is there a character in the buffer?

See the Atmel HOWTO: examples_2560/serial

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

22

Mega2560 UART C Interface
Lib C support (standard C):
char fgetc(fp): receive a character

fputc(’a’, fp): put a character out to the port

fputs(”foobar”, fp): put a string out to the port

fprintf(fp, ”foobar %d %s”, 45, ”baz”):
put a formatted string out to the port

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

23

Summary: Using OUlib + LibC
• At the top of your source file:
#include "oulib_serial_buffered.h“

• Initialization (in your main() function):
fp = serial_init_buffered(1, 9600, 40, 40)

sei();

• Getting a character:
char c;
C = fgetc(fp);

• Sending a character:
fputc(’f’, fp);

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

24

Character Representation

• A “char” is just an 8-bit number
• In some cases, we just interpret it

differently.
• But: we can still perform mathematical

operations on it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

25

Character
Representation:

ASCII

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Reading a Byte from the Serial Port

int c;

c=fgetc(fp);

Note: fgetc() “blocks” until a byte is available
• Will only return with a value once a

character is available to be returned

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

52

Processing Serial Input

serial_buffered_input_waiting(fp) tells us whether a byte
is ready to be read

int c;
while(1) {
if(serial_buffered_input_waiting(fp)) {

// A character is available for reading
c = fgetc(fp);
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Mega2560 UART C Interface

Also available:
• fscanf(): formatted input

See the LibC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Physical Interface
Four matched pairs of transmit and receive

pins (TX? and RX?)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

55

Physical Interface
Port 0 is also connected to the USB port

See “hyperterm” on downloads page

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

56

Physical Interface

Our compass module also speaks 0/5 V
RS232

• See project 2 for details

