# Digital to Analog and Back

- Analog: encoding information using voltage
  - Many sensors use voltage as an output
  - Motors torque is determined by current passing through the motor
- Digital: encoding information with bits

## How to move between these?

# **Digital to Analog Conversion**

How could we do this with a single digital pin of our microprocessor?



#### What does this circuit do?



- Processor digital pin: generate PWM signal
- RC circuit "smooths" this PWM signal out
- Pulse width determines smoothed voltage

# D2A: Pulse Width Modulation

- Easy to implement
- But:
  - Assumes "analog out" requires zero current
  - Smoothed signal may not be smoothed enough
  - Filter induces a delay

## Digital to Analog Conversion: Resistive Network

Sometimes need faster response

- Solution: use multiple digital pins
- What would this circuit look like?

# **Digital to Analog Conversion**

On the group quiz: 3-bit D2A converter

- Process specifies a digital output
- Within a short period of time (~ 1 ns), the voltage settles to the value that we computed

# **Digital to Analog Conversion**

In class exercise...

For a given voltage, what is the digital representation of the voltage?

• How would we implement this?

Board exercise...

For a given voltage, what is the digital representation of the voltage?

Common approach: successive approximation

- 1. Set V\_low = 0; V\_high 5
- Use a D2A converter to produce a voltage guess V =(V\_low + V\_high)/2
- 3. Compare this with the input voltage Vin
- 4. If guess is too low, then set  $V_{low} = V$
- 5. If guess is too high, then set  $V_high = V$
- 6. Continue with #2 (until V\_low == V\_high)

# A2D in the Mega2560

- The mega2560 contains hardware that implements successive approximation
- 16 mega2560 pins can be configured as analog



# Mega2560: The Connections

AREF: (for our purposes) connect to +5V

ADC will measure voltages between 0 and AREF



#### Connect input analog signal to the appropriate ADC pin

Andrew H. Fagg: Embedded Systems: Analog/Digital

14

# A Code Example: Configuration

// Initialize adc

adc\_set\_reference(ADC\_REF\_AREF);

adc\_set\_adlar(0);

adc\_set\_prescalar(ADC\_PRESCALAR\_128);

- // Use the AREF reference pin
- // For our purposes, always use 0
- // Necessary with 16MHz clock
- // and 10 bit resolution

// Turn on ADC Converter
adc\_set\_enable(ADC\_ENABLE);

## A Code Example: Use

uint16\_t val;

// Can do the following an arbitrary number of times

```
adc_set_channel(ADC_CHANNEL_0); // ADC0
// Actually start a conversion
adc_start_conversion();
```

<Could go off and do something else for a while>

val = adc\_read(); // Read the analog value

- All functions are provided in oulib
- See OUlib documentation for the definition of constants
- Can get to the example code from the Atmel HowTo www.cs.ou.edu/~fagg/classes/general/atmel

• Setting the maximum voltage:

adc\_set\_reference(ADC\_REF\_AREF); // Use the AREF reference pin

### • Can also used a fixed voltage (+2.56V):

adc\_set\_reference(ADC\_REF\_2p56V);

Determining how fast the conversion requires:

- Conversion requires:
   128 \* 15 / 16000000 seconds
  - Can convert faster, but may not get the full 10bit resolution

• Reading out the value:

val = adc\_read(); // Read the analog value

- Blocks until conversion is complete
- Will return a value between 0 and 0x3FF (1023)

• Can configure the mega2560 to interrupt on conversion completion

## **Other Devices**

- External devices are available that will perform D2A and A2D
- Often interface to the microprocessor via I<sup>2</sup>C or SPI
  - (these are high-speed serial protocols)
- Many options
  - Resolution
  - Conversion speed
  - Number of channels