Your Microprocessor in Action...

Our Microprocessor (for today)

Components:

e Memory: 16 bytes (address: O ... 15)

e Arithmetic logical unit

 Registers: RO, R1, R2, R3

e Display

* Program counter

* Instruction decoder

e Compiler (not really part of the processor)

Memory

Operations:
e Store a register value into a memory location

e Read a memory location and give it to a
register

Simplifications:

 We will allow names for memory locations

Registers

Operations:
 Receive a byte
 Send a byte

Arithmetic Logical Unit (ALU)

Operations:

COMPUTE STORE
e A: R1 +R3 -> R1 Add
e B: R1+R3+carry -> R1 Add with carry
e C: R1 x R3 -> [RO, R1] Multiply
e D: R1 & R3 -> R1 Bit-wise AND
e E: R1 | R3 -> R1 Bit-wise OR
e F: ~R1 -> R1 Bit-wise NOT
e G: -R1 -> R1 2’s Comp Neg
e H(x,vy): y -> Rx Copy value y to Rx
e J(x,v): Ry -> Rx Copy Ry to Rx
e T: R1-R3 XXXXXXXXX Compare

Each operation can also update the status register:
e SR[zero]: is the result zero?
 SR[negative]: is the result negative?

e SR[carry]: was there a carry?

Program Memory

e Stores our program

e We will start with C

* For each line of C, our compiler will translate
into a sequence of “atomic” instructions

Program Counter

Keeps track of which part of the program that
we are currently executing

Operations:
e Go to the next line
e Skip up or down multiple lines

e Conditional (on status bit): skip up or down
multiple lines

Display

One operation:
 Receive a byte

In response to this operation:
 Convert to written representation
e Write it

Instruction Decoder

Tells everyone what to do....

Sequence:

Fetch the line of code that is currently indicated by
the program counter

Convert to a sequence of atomic instructions (this is
done by our compiler)

For each operation in order: tell the relevant
components what to do

Repeat

Instruction Decoder

Must determine what is done by each
component:

* Memory

* Registers

e Display

e ALU

* Program counter

Program

uint8 t a;
a = 5;
display(a);

= a + /;

Program

Program

uint8 t a;

urnt8 t b;

a = 5;

b = 17;

i1IfT (a<Db) {
a =a + b;

by

display(a);

Program #4

uint8 t a;

urnt8 t 1;

a = 0;

for(i = 0; i < 4; ++i) {
a=-a-+1;

by
display(a);

Program

INt8 t a;
InNt8 t b;

a = 5;

b = a * 100;
display(b);

Program

INtle t a;
INtle t b;

a = 5;

b = a * 100;
display(b);

Program #/

uint8 t a;

urnt8 t 1;

a = 0;

for (i 1; 1 > 0; 1*=2) {
a=a/| r;
display(a);

Take-Home Messages

Many different components

The components must be coordinated to
execute the program properly

Instructions are translated into a set of control
signals for your microprocessor

Be aware of variable sizes:

— Small is good for efficiency

— But the computations that you are performing
must fit within these small spaces

Caveats

Compilation really happens long before
execution

Variable names are handled by the compiler
(and disappear before execution)
Many more registers

— Variables are stored longer in registers if they are
used in consecutive lines (efficiency, but with
challenges)

Many more instructions

