
Sensor Processing

So far, our code looks something like this:

while(1) {
<read some sensors>
<respond to the sensor input>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

1

Sensor Processing

• Sometimes, this is sufficient
• Other times:

– We need to respond to certain events very
quickly

– We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

3

Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes a small
piece of code called: interrupt handler or
interrupt service routine (ISR)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

4

Some Sources of Interrupts
(atmega2560)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

5

Interrupt Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

6

An Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

7

An Example

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

8

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

9

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

10

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

11

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

12

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

13

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

14

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

15

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

16

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

17

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

18

Interrupt Routines
Generally a very small number of

instructions
• We want a quick response so the

processor can return to what it was
originally doing

• No delays, waits, or floating point
operations in the ISR…

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Timer 0 Interrupt

We can configure the timer to generate an
interrupt every time that the timer’s
counter “rolls over” from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

20

Timer 0 Interrupt Example

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

21

Timer 0 Example

msinterval 384.16
000,000,16
256*1024

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

22

Timer 0
Interrupt Service Routine (ISR)

An ISR is a type of function that is called
when the interrupt is generated

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

23

Timer 0
Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30
2*256*1024

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

24

Example I:
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

25

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
• PB0 state is altered asynchronously from

what is happening in the main program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

26

Next Example: Timer 0 Example II

msinterval 384.16
000,000,16
256*1024

How many interrupts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

27

Timer 0 Example II

0352.61
384.16

1000

ms
mscounts

How many interrupts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

28

Example II: Interrupt Service
Routine (ISR)

ISR(TIMER0_OVF_vect) {
static uint8_t counter = 0;
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

29

Example II: Interrupt Service
Routine (ISR)

uint8_t counter = 0;

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

30

Example II: Initialization
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

31

Timer 0 Example II

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

32

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0
2*61*256*1024

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

33

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

• prescaler (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency
division

Generating a PWM Signal in
Software

How would we do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

44

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

45

Generating a PWM Signal in
Software

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

46

Generating a PWM Signal in
Software

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

software counter
• When the counter is 0, turn the signal on
• When the counter reaches some

“duration”, turn the signal off

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

47

Our Implementation
volatile uint8_t duration = 42;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

if(counter == duration) PORTB &= ~8;
else if(counter == 0) PORTB |= 8;
++counter;

} NOTE: there is a subtle bug. Think about
what happens when the main program
changes duration

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

48

Another Implementation
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

++counter;
if(counter >= duration)

PORTB &= ~8;
else if(counter == 0)

PORTB |= 8;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

49

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

50

Initialization
int main(void) {

DDRB = 0x08;
PORTB = 0;

duration = 0;

// Interrupt configuration
timer0_config(TIMER0_PRE8); // Prescaler = 8

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

51

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

52

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

mst 128.0
16000000

2568

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

53

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

54

PWM Implementation

What is the period of the pulse?
• The 8-bit software counter expires every 256

interrupts

mst 77.32
16000000

256*256*8

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

55

Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i)
duration = i;
delay_ms(50);

};
};

}

NOTE: DON’T USE THIS SOFTWARE
PWM FOR YOUR PROJECT
• Use hardware PWM instead

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

56

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

57

ISR Example III
ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

}; What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

58

Timer 0 Example III

What is the flash frequency?

KHzfrequency 9.3
2*256*8

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

59

ISR Example III:
How about this case?

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;
timer0_set(128); // Set the timer0 counter to 128

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

};
What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

60

Timer 0 Example III

What is the flash frequency?

KHzfrequency 8.7
2*128*8

000,000,16

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

61

Different Timers

• Timer 0
• Timer 1, 3, 4, 5
• Timer 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

62

Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short

also
– Minimize looping
– No “printf()”

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

63

Interrupts, Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

64

Shared Data and Compiler
Optimizations

For example:
A = A + 1;
C = B + A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

65

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

66

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:

R1 = A; // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

67

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

68

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

69

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

70

Shared Data and Compiler
Optimizations

volatile uint8_t A;

This will cause the compiler to do this:

while(1) {
R1 = A; // Fetch value of A into reg 1
PORTB = R1;

}

The compiler only fetches A from memory every time it needs
it!

Shared Data and Interrupts

• Recall: the data bus on the mega2560 is 8
bits wide

• A byte can be transferred in one cycle
• Any data structure larger than a byte

requires multiple transfers

When there are interrupts: this can lead to
subtle (but very real) problems

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

71

For example:
uint16_t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

72

For example:
uint16_t a;

a = a + 5;

Steps:
• Transfer of the low byte from memory to a

general purpose register
• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

73

Suppose that an ISR routine views and then
modifies the variable a …

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

74

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

75

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Interrupt occurs:
• ISR changes a, but main program still

uses old value

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

76

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

77

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Interrupt occurs:
• The ISR “sees” the new value of the low

byte and the old value of the high byte

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

78

Solution?

One possibility:
• If the main program is working with a, then

it can temporarily disable interrupts while it
does this operation

• Note: it should not disable interrupts for
very long

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

79

Turning off Interrupts
uint16_t a;
:
:

cli; // Turn off interrupts
a = a + 5;

sei; // Turn them back on

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

80

Shared Data Problems
• Any time that the main program and the

ISR both view/operate on a global
variable, the potential exists for these
shared data problems

• Always a problem if the variable is larger
than a single byte

• Some single byte variables are a problem,
but not all are (it depends on how they are
used)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

81

Turning off Interrupts

• Always turn off for the shortest time
possible

• There are some cases in which interrupts
do not need to be turned off for things to
work properly
– E.g., our “flag” in project 4

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

82

