
Sensor Processing

So far, our code looks something like this:

while(1) {
<read some sensors>
<respond to the sensor input>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

1

Sensor Processing

• Sometimes, this is sufficient
• Other times:

– We need to respond to certain events very
quickly

– We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

3

Interrupts

• Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

• The processor then executes a small
piece of code called: interrupt handler or
interrupt service routine (ISR)

• Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

4

Some Sources of Interrupts
(atmega2560)

External:
• An input pin changes state
• The UART receives a byte on a serial input

Internal:
• A clock
• Processor reset
• The on-board analog-to-digital converter

completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

5

Interrupt Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

6

An Example
Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

7

An Example

PC

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

8

An Example
An interrupt occurs (EXT_INT1):

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

9

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

10

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

11

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

12

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

13

An Example
Execute the interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

14

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

PC

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

15

An Example
Return from interrupt

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETI

PC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

16

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

17

An Example
Continue execution with original

LDS R1 (A)
LDS R2 (B)
CP R2, R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

EXT_INT1:

LDS R1 (G)
LDS R5 (L)
ADD R1, R2

:
RETIPC

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

18

Interrupt Routines
Generally a very small number of

instructions
• We want a quick response so the

processor can return to what it was
originally doing

• No delays, waits, or floating point
operations in the ISR…

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Timer 0 Interrupt

We can configure the timer to generate an
interrupt every time that the timer’s
counter “rolls over” from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

20

Timer 0 Interrupt Example

Suppose:
• 16MHz clock
• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

21

Timer 0 Example

msinterval 384.16
000,000,16
256*1024



Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

22

Timer 0
Interrupt Service Routine (ISR)

An ISR is a type of function that is called
when the interrupt is generated

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

23

Timer 0
Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30
2*256*1024

000,000,16


Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

24

Example I:
ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

25

Timer 0 with Interrupts

This solution is particularly nice:
• “something else” does not have to worry

about timing at all
• PB0 state is altered asynchronously from

what is happening in the main program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

26

Next Example: Timer 0 Example II

msinterval 384.16
000,000,16
256*1024



How many interrupts do we need so that we
toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

27

Timer 0 Example II

0352.61
384.16

1000


ms
mscounts

How many interrupts do we need so that we
toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

28

Example II: Interrupt Service
Routine (ISR)

ISR(TIMER0_OVF_vect) {
static uint8_t counter = 0;
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

29

Example II: Interrupt Service
Routine (ISR)

uint8_t counter = 0;

ISR(TIMER0_OVF_vect) {
++counter;
if(counter == 61) {

// Toggle output state every 61st interrupt:
// This means: on for ~1 second and then off for ~1 sec
PORTB ^= 1;
counter = 0;

};
};

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

30

Example II: Initialization
(same as before)

// Initialize counter
counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

while(1) {
// Do something else

};

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

31

Timer 0 Example II

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

32

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0
2*61*256*1024

000,000,16


Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

33

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

• prescaler (1 … 1024)
• Timer0 (256)
• Counter within an interrupt routine (any)

Each counter implements a frequency
division

Generating a PWM Signal in
Software

How would we do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

44

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

45

Generating a PWM Signal in
Software

We need:
• To produce a periodic behavior, and
• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

46

Generating a PWM Signal in
Software

How do we implement this in code?

One way:
• Interrupt routine increments an 8-bit

software counter
• When the counter is 0, turn the signal on
• When the counter reaches some

“duration”, turn the signal off

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

47

Our Implementation
volatile uint8_t duration = 42;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

if(counter == duration) PORTB &= ~8;
else if(counter == 0) PORTB |= 8;
++counter;

} NOTE: there is a subtle bug. Think about
what happens when the main program
changes duration

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

48

Another Implementation
volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)
{

static uint8_t counter = 0;

++counter;
if(counter >= duration)

PORTB &= ~8;
else if(counter == 0)

PORTB |= 8;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

49

Initialization Details

• Set up timer
• Enable interrupts
• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

50

Initialization
int main(void) {

DDRB = 0x08;
PORTB = 0;

duration = 0;

// Interrupt configuration
timer0_config(TIMER0_PRE8); // Prescaler = 8

// Enable the timer interrupt
timer0_enable();

// Enable global interrupts
sei();

:

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

51

PWM Implementation

What is the resolution (how long is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

52

PWM Implementation

What is the resolution (how long is one increment
of “duration”)?

• The timer0 counter (8 bits) expires every 256
clock cycles

(assuming a 16MHz clock)

mst 128.0
16000000

2568





Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

53

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

54

PWM Implementation

What is the period of the pulse?
• The 8-bit software counter expires every 256

interrupts

mst 77.32
16000000

256*256*8


Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

55

Doing “Something Else”
:

unsigned int i;
while(1) {

for(i = 0; i < 256; ++i)
duration = i;
delay_ms(50);

};
};

}

NOTE: DON’T USE THIS SOFTWARE
PWM FOR YOUR PROJECT
• Use hardware PWM instead

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

56

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

57

ISR Example III
ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

}; What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

58

Timer 0 Example III

What is the flash frequency?

KHzfrequency 9.3
2*256*8

000,000,16


Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

59

ISR Example III:
How about this case?

ISR(TIMER0_OVF_vect) {
// Toggle the LED attached to bit 0 of port B
PORTB ^= 1;
timer0_set(128); // Set the timer0 counter to 128

};

int main(void){
timer0_config(TIMER0_PRE_8);
timer0_enable();
sei();

while(1) {
// Do something else

};
What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

60

Timer 0 Example III

What is the flash frequency?

KHzfrequency 8.7
2*128*8

000,000,16


Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

61

Different Timers

• Timer 0
• Timer 1, 3, 4, 5
• Timer 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

62

Interrupt Service Routines

• Should be very short
– No “delays”
– No busy waiting
– Function calls from the ISR should be short

also
– Minimize looping
– No “printf()”

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

63

Interrupts, Shared Data
and Compiler Optimizations

• Compilers (including ours) will often
optimize code in order to minimize
execution time

• These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

64

Shared Data and Compiler
Optimizations

For example:
A = A + 1;
C = B + A

Will result in ‘A’ being fetched from memory
once (into a general-purpose register) –
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

65

Shared Data and Compiler
Optimizations

Now consider:

while(1) {
PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

66

Shared Data and Compiler
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:

R1 = A; // Fetch value of A into register 1
while(1) {

PORTB = R1;
}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

67

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

68

Shared Data and Compiler
Optimizations

This optimization is generally fine – but
consider the following interrupt routine:

ISR(TIMER0_OVF_vect){
A = PIND;

}

• The global variable ‘A’ is being changed!
• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

69

Shared Data and Compiler
Optimizations

The fix: the programmer must tell the
compiler that it is not allowed to assume
that a memory location is not changing

• This is accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

70

Shared Data and Compiler
Optimizations

volatile uint8_t A;

This will cause the compiler to do this:

while(1) {
R1 = A; // Fetch value of A into reg 1
PORTB = R1;

}

The compiler only fetches A from memory every time it needs
it!

Shared Data and Interrupts

• Recall: the data bus on the mega2560 is 8
bits wide

• A byte can be transferred in one cycle
• Any data structure larger than a byte

requires multiple transfers

When there are interrupts: this can lead to
subtle (but very real) problems

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

71

For example:
uint16_t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

72

For example:
uint16_t a;

a = a + 5;

Steps:
• Transfer of the low byte from memory to a

general purpose register
• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

73

Suppose that an ISR routine views and then
modifies the variable a …

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

74

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

75

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Interrupt occurs:
• ISR changes a, but main program still

uses old value

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

76

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

77

• Transfer of the low byte from memory to a
general purpose register

• Transfer of the high byte
• Addition operation (multiple steps)
• Transfer of the low byte from GP to mem
• Transfer of the high byte from GP to mem

Interrupt occurs:
• The ISR “sees” the new value of the low

byte and the old value of the high byte

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

78

Solution?

One possibility:
• If the main program is working with a, then

it can temporarily disable interrupts while it
does this operation

• Note: it should not disable interrupts for
very long

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

79

Turning off Interrupts
uint16_t a;
:
:

cli; // Turn off interrupts
a = a + 5;

sei; // Turn them back on

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

80

Shared Data Problems
• Any time that the main program and the

ISR both view/operate on a global
variable, the potential exists for these
shared data problems

• Always a problem if the variable is larger
than a single byte

• Some single byte variables are a problem,
but not all are (it depends on how they are
used)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

81

Turning off Interrupts

• Always turn off for the shortest time
possible

• There are some cases in which interrupts
do not need to be turned off for things to
work properly
– E.g., our “flag” in project 4

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

82

