Project 1

Project 1 Objectives

At the end of this project, you should be able to:

- create simple microcontroller-based circuits,
- read digital information from a switch,
- compute errors between desired and actual state variables, and
- convey information about sensors using a set of LEDs.

Part 1: Circuit

- Mount Arduino board to your solderless breadboard. Mount both to frisbee
- Connect and mount the compass. Compass must be 12" above the ground (at least)
- 4 LEDs in circle: will use to display heading or heading error
- 10-LED bar: will use in next project to display distances
- Add a switch

Part 2: Compass Interface

Must implement:

- int16_t get_heading(void)
 - Returns heading in 10ths of a degree.
 - Range: -1799 to 1800 (0 is North)
- Main function: include a while(1) loop that:
 - Gets the heading
 - Displays the heading (part 3)
 - delay_ms(100)

Part 3: Sensor Processing and Display

Must implement:

- int16_t compute_heading_error(int16_t heading, int16_t heading_goal)
 - Returns the difference between heading and heading_goal
 - Return value range: -1799 to 1800 (0 means heading is at heading_goal)
- void display_heading(int16_t theta)
 - Changes the 4 LEDs to indicate theta
 - Must encode at least 8 different orientations

Part 3: Sensor Processing and Display

Must implement:

- In main function: switch state determines whether you display the heading or the heading error
- You may hard-code the heading goal in your main function

Part 4: Hovercraft

- Mount lift fan
- Start mounting batteries and other lift fans

Demonstration/Presentation

- All group members must be present
- 4-5 slide presentation (see project spec)
- Demonstration
- All group members must be able to answer questions about the hardware or software
- Code review

Code

- Check in code to subversion tree (it should be clear which files are for project 1)
- Code must be documented (see project specification for an example)

Other Components into Subversion Tree

- Presentation file
- Circuit diagram
 - Must use EagleCad
 - Deadline for training is Friday (each group must send one envoy to Andy for this). Also – get hyperterm or "screen" training if you have time

Personal Reports

- Next week you will receive a request from catme to fill out an evaluation of you and your group
- Must be filled in to receive project grade

Group Grade

- 35%: Project implementation
- 30%: Demonstration/presentation of working project (to either of the TA or the instructor)
- 35%: Code documentation and circuit diagram

Personal Programming Components

- Must accumulate at least two during the semester
- To receive credit, you must be the primary designer, implementer and debugger of the component
- Your other group members should still help!

Personal Grade

- For all parts not including the personal programming components: each group member should contribute about equally
- If this is the case, then your personal grade will be equal to the group grade
- If not, then the personal grades will be adjusted appropriately

Next ...

- Finish sign-offs of:
 - Subversion
 - Programming the Atmel processor
 - Group: attach LEDs to the Atmel and control them (could be the same ones for the project)
- Start on project 1