Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
 Send commands to actuators
* Or both (e.g., disks, audio, video devices)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

/O Systems

Communication can happen in a variety of
ways:

* Binary parallel signal

* Analog

e Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

An Example:
SICK Laser Range Finder

L aser Is scanned
horizontally

Using phase information,
can infer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 3
Time Systems: Serial Comm

Serial Communication

« Communicate a set of bytes using a single
signal line

 We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Experiment...

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Communication

The sender and recelver must have some
way of agreeing on when a specific bit Is
being sent

e Some cases: the sender will also send a
clock signal (on a separate line)

e Other cases: each side has a clock to tell it
when to write/read a bit

— The sender/receiver must first synchronize
their clocks before transfer begins

Andrew H. Fagg: Embedded Real- 6
Time Systems: Serial Comm

Asynchronous Serial
Communication

 The sender and receiver have their own
clocks, which they do not share

e This reduces the number of signal lines

 Bidirectional transmission, but the two
halves do not need to be synchronized Iin
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

 Must both be operating at essentially the
same transmit/receive frequency

o A data byte Is prefaced with a bit of
iInformation that tells the receiver that data
are coming

e The receilver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real- 8
Time Systems: Serial Comm

A Typical Data Frame

01234567

start stop
hit bits

The start bit indicates that a byte iIs coming

A Typical Data Frame

01234567

start stop
bit bits

The stop bits allow the receiver to
immediately check whether this is a valid
frame

e |f not, the byte Is thrown away

10

Data Frame Handling

Most of the time, we do not deal with the
data frame level. Instead, we rely on:

e Hardware solutions: Universal
Asynchronous Recelver Transmitter
(UART)

—Very common in computing devices
o Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

11

One (Old) Standard: RS232-C

Defines a logic encoding standard:

» “High” Is encoded with a voltage of -5 to -15
(-12 to -13V is typical)

* “Low” Is encoded with a voltage of 5 to 15
(12 to 13V is typical)

Andrew H. Fagg: Embedded Real- 15
Time Systems: Serial Comm

RS232 on the Mega2560

Our mega 2560 has FOUR Universal,
Asynchronous serial
Receiver/Transmitters (UARTS):

 Each handles all of the bit-level
manipulation
— Software only worries about the byte level

e Uses OV and 5V to encode “lows” and
“highS”
— Must convert if talking to a true RS232C
device (+/- 13V)

Andrew H. Fagg: Embedded Real- 21
Time Systems: Serial Comm

Mega2560 UART C Interface

Lib C support (standard C):
char fgetc(fp): receive a character

fputc(’a’, fp): putacharacter out to the port

fputs(C’foobar’, Tp): put a string out to the port

fprintf(fp, “’foobar %d %s’”, 45, ’baz’):
put a formatted string out to the port

Andrew H. Fagg: Embedded Real- 22
Time Systems: Serial Comm

Mega2560 UART C Interface

OUlib support:
fp = serial_init_buffered(l, 38400, 40, 40)

Initialize port one for a transmission rate of 38400 bits per
second (input and output buffers are both 40 characters

long)
Note: declare fp as a global variable:

FILE *fp;

serial _buffered 1nput warting(fp)
Is there a character in the buffer?

See the Atmel HOWTO: examples 2560/serial

Andrew H. Fagg: Embedded Real- 23
Time Systems: Serial Comm

Reading a Byte from the Serial Port

iInNt c;
c=fgetc(fp);

Note: fgetc() “blocks” until a byte Is available

 Will only return with a value once a
character is available to be returned

Andrew H. Fagg: Embedded Real- 24
Time Systems: Serial Comm

Processing Serial Input
int c;
while(1l) {
1T(serial _buffered 1nput warting(fp)) {
// A character i1s available for reading
= fgetc(Tp);
<do something with the character>

}

<do something else while waiting>

}

serial _buffered_input_waiting(fp) tells us whether a byte
is ready to be read

Andrew H. Fagg: Embedded Real- 25
Time Systems: Serial Comm

Mega2560 UART C Interface

Also available:
e fscant () : formatted input

See the LIbC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

Character Representation

e A “char” is just an 8-bit number

e This allows us to perform meaningful
mathematical operations on the characters

Andrew H. Fagg: Embedded Real- 28
Time Systems: Serial Comm

Binary Dec | Hex Glyph Binary Dec Hex Glyph Binary |Dec Hex Glyph

010 0000| 32 | 200 5P 100 0000| &4 40 @ 110 0000| 96 | &0
010 0001| 33 | 21 ! 100 0001 | 65 | 41 A 110 0001 | 97 | 61 a
010 0010 34 @ 22 ! 100 0010| 66 | 42 B 110 0010| 98 @ B2 b
010 0011 35 | 23 # 100 0011 | &7 | 43 C 110 0011 | 99 &3 &
010 0100| 36 @ 24 § 100 0100| 68 44 D 110 0100|100 @ &4 d
0100101| 37 | 25 | % 100 0101 | 69 | 45 E 110 0101|101 65 e
C h araCte r 010 0110| 38 | 26 & 100 0110| 70 | 46 F 110 0110|102 &6 1
010 0111 39 27] 1000111 71 | 47 | G 110 0111|103 | &7 g
- 010 1000 | 40 @ 28 (100 1000| 72 48 H 110 1000|104 @ 68 h
R e p re S e n tatl O n - 010 1001 | 41 @ 29) 100 1001 | 73 | 49 [110 1001|105 &9 [
. 010 1010 42 | 2A " 100 1010| 74 | 4A J 110 1010|106 @ 6A]
010 1011 43 | 2B + 100 1011| 75 | 4B K 110 1011|107 6B k
AS C I I 010 1100 44 @ 2C ; 100 1100| 76 1 4C L 110 1100|108 6C |
010 1101 45 | 2D - 1001101 77 (4D M 110 1101|109 6D m
010 1110 46 | 2E 9 100 1110| 78 (4E N 110 1110{110 | 6E n
010 1111 | 47 | 2F f 100 1111| 79 | 4F 0 110 1111|111 6F o
011 0000 | 48 | 30 0 101 0000| 80 | 50 P 111 0000|112 70 p
011 0001 49 | 31 1 101 0001| 81 | 51 Q 111 0001|113 71 q
011 0010| 50 | 32 2 101 0010| 82 | 52 R 111 0010|114 72 r
011 0011 51 | 33 3 101 0011| 83 | 53 5 111 0011|115 73 s
011 0100 52 34 4 101 0100| 84 54 T 111 0100|116 @ 74 t
011 0101| 53 | 35 5 101 0101| 85 | 55 u 111 0101|117 75 u
011 0110 54 | 36 B 101 0110 86 | 56 W 111 0110{118 76 v
0110111 | 55 | 37| 7 101 0111 87 | 59 | W 111 0111{119 77 | w
011 1000| 56 | 38 B 101 1000| 88 58 X 111 1000|120 78 X
011 1001| 57 39 9 101 1001| 89 58 Y 111 1001|121 79 y
011 1010| 58 @ 3A : 101 1010| 90 ' 5A Z 111 1010{122 | 7A z
011 1011 59 | 3B ; 101 1011| 91 | 5B [111 1011|123 7B {
011 1100 60 3C < 101 1100| 92 | 5C \ 111 1100|124 7C |
Andrew H. Fag1 0111101 61 (3D | = 101 1101| 93 | 5D] 111 1101|125 7D I
011 1110 62 | 3E| = 101 11101 94 | 5E 2 111 1110{126 | 7E ~

Time Systen
011 1111/ &3 | 3F 7 101 1111/ 95 | 5F

Serial Challenge

e Suppose that we know that we will be
receiving a sequence of 3 decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Buffers

A buffer Is an array that temporarily stores
data in sequential order

fp = serial_init buffered(l, 38400, 40, 40)

e Declares both the input and output buffer
sizes to be 40 bytes

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Output Buffer

* Any characters that are produced (e.g.,
with fputc() or fprintf()) are first placed in
the output buffer

e Then, the serial hardware removes one
byte at a time to send it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Output Buffer

* Advantage: fputc() and fprintf() don’t have
to walit for the bytes to be transmitted
— Your program can keep doing the rest of its
job
o But: if the buffer fills up, these functions
will block until there is space

— You must choose your buffer size somewhat
carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Input Buffer

Temporary storage of bytes as they are
received

* Your program can read these bytes at its
leisure

o With OULIB: if the buffer fills up, then
additional bytes will be lost

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

34

Physical Interface

Four matched pairs of transmit and receive
pins (TX? and RX?)

MADE IN @

LRI |

Arduino MEGA

Wuuarduino.cc

————ANALOG IN ——— "
"‘.T i} 'E'-_'.- '_' M |_..| |._|!H o N5 T | EI IEI o 4+ -?I -_s-ll : : -.:*I- I."; L

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

35

Physical Interface

Port O Is also connected to the USB port

W W W e W e W W W we e e e R R e R

....... A - A

i

g
CTTETT]

Arduino MEGA

Wuuarduino.cc

—————————

See “hyperterm” on downloads page -

36

