Your Microprocessor in Action...

Our Microprocessor (for today)

Components:

e Memory: 16 bytes (address: O ... 15)

e Arithmetic logical unit

e Status register

 General purpose registers: RO, R1, R2, R3
* Display

* Program counter

e Instruction decoder

e Compiler (not really part of the processor)

Memory

Operations:
e Store a register value into a memory location

e Read a memory location and give it to a
register

Simplifications:

 We will allow names for memory locations

General Purpose Registers

Purpose: temporary storage of values for
immediate computation

Operations:
 Receive a byte
 Send a byte

Status Register
(a special purpose register)

Individual bits:

e Zero: was the result of the last mathematical
operation zero?

 Negative: was the result negative?
e Carry: was there a carry?

Arithmetic Logical Unit (ALU)

Operations:
COMPUTE STORE
e A: R1 + R3 -> R1 Add

Arithmetic Logical Unit (ALU)

Operations:

COMPUTE STORE
e A: R1 + R3 -> R1 Add
e A R3 + RO -> R3 Add

Arithmetic Logical Unit (ALU)

Operations:
COMPUTE
e A: R1+R3
e A R3 + RO
 B: RO + R2 + carry
e B R1 + R3 + carry

[N P
V V V V

STORE
R1
R3
RO
R1

Add
Add
Add with carry
Add with carry

Operations:

Arithmetic Logical Unit (ALU)

e A:
e A’
 B:
e B

C
D
E
. F
G
H
(

[J
—

e T

e U

(x, y):
X, VY):

COMPUTE

R1 +R3
R3 + RO
RO + R2 + carry
R1 + R3 + carry
R1 xR3

R1 & R3
R1 | R3
~R1

R1

y

Ry
R1-R3
R3 - R2

STORE

R1

R3

RO

R1

[RO, R1]

R1

R1

R1

R1

Rx

Rx
XXXXXXXXX
XXXXXXXXX

Each operation can also update the status register:
is the result zero?

is the result negative?
was there a carry?

e SR[zero]:
 SR[negative]:
e SR[carry]:

Add

Add

Add with carry
Add with carry
Multiply
Bit-wise AND
Bit-wise OR
Bit-wise NOT
2’s Comp Neg
Copy value y to Rx
Copy Ry to Rx
Compare
Compare

Program Memory

e Stores our program

e We will start with C

* For each line of C, our compiler will translate
into a sequence of “atomic” instructions

Program Counter
(special purpose register)

Keeps track of which part of the program that
we are currently executing

Operations:
e Jump to the next line
e Jump up or down multiple lines

e Conditional (on status bit): jump up or down
multiple lines

Display

One operation:
 Receive a byte

In response to this operation:
 Convert to written representation
e Write it

Instruction Decoder

Tells everyone what to do....

Sequence:

* Fetch the instruction that is currently indicated by
the program counter

 For each operation in order: tell the relevant
components what to do

* Repeat

Instruction Decoder

Must determine what is done by each
component:

* Memory

* Registers

e Display

e ALU

* Program counter

Program

uint8 t a;
a = 5;
display(a);

= a + /;

Program

Program

uint8 t a;

urnt8 t b;

a = 5;

b = 17;

i1IfT (a<Db) {
a =a + b;

by

display(a);

Program #4

uint8 t a;

urnt8 t 1;

a = 0;

for(i = 0; i < 4; ++i) {
a=-a-+1;

by
display(a);

Program

INt8 t a;
InNt8 t b;

a = 5;

b = a * 100;
display(b);

Program

INt8 t a;
INtle t b;

a = 5;

b = a * 100;
display(b);

Program #/

uint8 t a;

urnt8 t 1;

a = 0;

for (i 1; 1 > 0; 1*=2) {
a=a/| r;
display(a);

Take-Home Messages

Many different components

The components must be coordinated to
execute the program properly

Instructions are translated into a set of control
signals for your microprocessor

Be aware of variable sizes:

— Small is good for efficiency

— But the computations that you are performing
must fit within these small spaces

Caveats

e Variable names are handled by the compiler
(and disappear before execution)
e Many more registers

— Variables are stored longer in registers if they are
used in consecutive lines (efficiency, but with
challenges)

e Many more instructions

