
Andrew H. Fagg: Embedded Real-
Time Systems: Logic

1

Today

• Finish diodes
• Representing

information

www.thinkgeek.com

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

2

Representing Information Using
Voltage

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

3

Representing Information Using
Voltage

Analog representation: the precise voltage
matters.

• Suppose we observed voltage v on a wire
(e.g., an output from an accelerometer)

• The encoded quantity is some function of
that voltage:

 vfonaccelerati

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

4

Representing Information Using
Voltage

The simplest form assumes a linear
relationship:

 vonaccelerati

Analog Encoding

Electrical noise in the circuit can alter the
“true” voltage. E.g.:
• A device is turned on
• A motor is turned on or the direction is

reversed
External sources can affect analog signals:
• Cell phones

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

5

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

6

Representing Information Using
Voltage

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

7

Representing Information Using
Voltage

• Digital representation: the value to be
represented is binary – i.e., true or false

• For example, a bit b is:

otherwisefalse

Volts5.2true v
b

Note: assuming a 5V based system

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

8

Representing Information Using
Voltage

We typically use the shorthand:

 true1
false 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

9

Computing In Binary
(i.e., Logic)

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

10

What is the Gate?

• Logical Symbol:

• Algebraic Notation:

• Truth Table: A B
0

1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

11

The NOT Gate

• Logical Symbol:

• Algebraic Notation: B = A

• Truth Table: A B
0 1

1 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

12

And This Gate?

A B C
0 0
0 1
1 0
1 1

• Logical Symbol:

• Algebraic Notation: C = ?

• Truth Table:

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

13

The “AND” Gate

A B C
0 0 0
0 1 0
1 0 0
1 1 1

• Logical Symbol:

• Algebraic Notation: C = A*B = AB

• Truth Table:

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

14

And This Gate?

• Logical Symbol:

• Algebraic Notation: C = ?

• Truth Table:

A B C
0 0
0 1
1 0
1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

15

The “OR” Gate

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

A B C
0 0 0
0 1 1
1 0 1
1 1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

16

Exclusive OR (“XOR”) Gates

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

A B C
0 0
0 1
1 0
1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

17

Exclusive OR (“XOR”) Gates

• Logical Symbol:

• Algebraic Notation: C = A+B

• Truth Table:

A B C
0 0 0
0 1 1
1 0 1
1 1 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

18

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

19

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1 =0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

20

2-Input Multiplexer

A multiplexer is a device
that selects between two
input lines

• A & B are the inputs
• S is the selection signal

(also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1 =1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

21

N-Input Multiplexer

Suppose we want to
select from between
N different inputs.

• This requires more
than one select line.
How many?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

22

N-Input Multiplexer

How many select lines?

• M = log2N
or

• N = 2M

What would the N=8
implementation look
like?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

23

Back to Binary…

With a binary digit, we can only represent
two different values…

How do we represent more?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

24

Back to Binary…

How do we represent more?
• As in the decimal number system, we

introduce multiple digits…

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

25

Binary Encoding

How do we
convert from
binary to
decimal in
general?

B2 B1 B0 decimal
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

26

Binary to Decimal Conversion

 3
3

2
2

1
10 2*2*2* BBBBvalue

1

0
2*

N

i

i
iBvalue

How do we convert from decimal
to binary?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

27

Decimal to Binary Conversion

int value;

For each i: B[i] = 0

for(i = 0; value > 0; ++i) {
B[i] = remainder of: value/2;
value = value/2;

}

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

28

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

29

Binary Addition

Consider the following binary numbers:

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

How do we add these numbers?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

30

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

31

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1
And we have a carry now!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

32

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 0 1
And we have a carry again!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

33

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 0 0 1
and again!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

34

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

1 0 0 0 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

35

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1 0 0 0 1
One more carry!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

36

Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

0 1 0 1 0 0 0 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

37

Binary Addition

Behaves just like addition in decimal, but:
• We carry to the next digit any time the sum

of the digits is 2 (decimal) or greater

Binary Counting…

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

38

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

39

Negative Numbers

So far we have only talked about
representing non-negative integers

• What can we add to our binary
representation that will allow this?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

40

Representing Negative Numbers

One possibility:
• Add an extra bit that indicates the sign of

the number
• We call this the “sign-magnitude”

representation

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

41

Sign Magnitude Representation

+12 0 0 0 0 1 1 0 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

42

Sign Magnitude Representation

+12 0 0 0 0 1 1 0 0

-12 1 0 0 0 1 1 0 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

43

Sign Magnitude Representation

+12 0 0 0 0 1 1 0 0

-12 1 0 0 0 1 1 0 0

What is the problem with this approach?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

44

Sign Magnitude Representation

What is the problem with this approach?
• Some of the arithmetic operators that we

have already developed do not do the right
thing

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

45

Sign Magnitude Representation

Operator problems:
• For example, we have already discussed a

counter (that implements an ‘increment’
operation)

-12 1 0 0 0 1 1 0 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

46

Sign Magnitude Representation

Operator problems:

-12 1 0 0 0 1 1 0 0

Increment

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

47

Sign Magnitude Representation

Operator problems:

-12 1 0 0 0 1 1 0 0

1 0 0 0 1 1 0 1

Increment

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

48

Sign Magnitude Representation

Operator problems:

-12 1 0 0 0 1 1 0 0

-13 1 0 0 0 1 1 0 1

Increment

!!!!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

49

Representing Negative Numbers

An alternative:
• When taking the additive inverse of a

number, invert all of the individual bits
• The leftmost bit still determines the sign of

the number

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

50

One’s Complement Representation

12 0 0 0 0 1 1 0 0

-12 1 1 1 1 0 0 1 1

Invert

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

51

One’s Complement Representation

12 0 0 0 0 1 1 0 0

-12 1 1 1 1 0 0 1 1

1 1 1 1 0 1 0 0

Invert

Increment

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

52

One’s Complement Representation

12 0 0 0 0 1 1 0 0

-12 1 1 1 1 0 0 1 1

-11 1 1 1 1 0 1 0 0

Invert

Increment

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

53

One’s Complement Representation

What problems still exist?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

54

One’s Complement Representation

What problems still exist?
• We have two distinct representations of

‘zero’:
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

55

One’s Complement Representation

What problems still exist?
• We can’t directly add a positive and a

negative number:
12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

56

One’s Complement Representation

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 0

0 0 0 0 0 1 1 0

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

57

One’s Complement Representation

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 0

6 0 0 0 0 0 1 1 0
!!!!

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

58

Today

• Two’s complement
numbers

• Binary math
• Bit-wise operators

www.thinkgeek.com

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

59

Representing Negative Numbers

An alternative:
(a little intuition first)

0 0 0 0 0 0 0 0 0

Decrement

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

60

Representing Negative Numbers

An alternative:
(a little intuition first)

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

Decrement

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

61

Representing Negative Numbers

An alternative:
(a little intuition first)

0 0 0 0 0 0 0 0 0

-1 1 1 1 1 1 1 1 1

Decrement
Define this as

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

62

Representing Negative Numbers
A few more numbers:

3 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1
-2 1 1 1 1 1 1 1 0
-3 1 1 1 1 1 1 0 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

63

Two’s Complement Representation

In general, how do we take the additive
inverse of a binary number?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

64

Two’s Complement Representation

In general, how do we take the additive
inverse of a binary number?

• Invert each bit and then add ‘1’

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

65

Two’s Complement Representation

Invert each bit and then add ‘1’

5 0 0 0 0 0 1 0 1

-5 1 1 1 1 1 0 1 1

Two’s complement

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

66

Two’s Complement Representation
Now: let’s try adding a positive and a

negative number:

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

67

Two’s Complement Representation
Now: let’s try adding a positive and a

negative number:

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 1

0 0 0 0 0 1 1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

68

Two’s Complement Representation
Now: let’s try adding a positive and a

negative number:

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 1

7 0 0 0 0 0 1 1 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

69

Two’s Complement Representation

Two’s complement is used for integer
representation in today’s processors

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

70

Two’s Complement Representation

Two’s complement is used for integer
representation in today’s processors

One oddity: we can represent one more
negative number than we can positive
numbers

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

71

Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g., A – B)

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

72

Implementing Subtraction

How do we implement a ‘subtraction’
operator?

(e.g., A – B)

• Take the 2s complement of B
• Then add this number to A

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

73

Other Useful Number Systems

You already know:
• Decimal – base 10
• Binary – base 2

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

74

Other Useful Number Systems

You already know:
• Decimal – base 10
• Binary – base 2

But it is common to also see:
• Octal – base 8
• Hexadecimal – base 16

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

75

Other Number Systems
Decimal Binary Octal Hex

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

Decimal Binary Octal Hex

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

76

Binary to Hex Conversion

What is the hex equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

77

Binary to Hex Conversion

What is the hex equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Partition the binary digits into groups of
four – starting from the right-hand-side

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

78

Binary to Hex Conversion

What is the hex equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

3 1 C 9

Convert the individual groups

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

79

Binary to Hex Conversion

In C notation (the programming language),
we will write:

0x31C9

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

80

Binary to Octal Conversion

What is the octal equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

81

Binary to Octal Conversion

What is the octal equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Partition the binary digits into groups of
three – starting from the right-hand-side

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

82

Binary to Octal Conversion

What is the octal equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

3 0 7 1 1

Convert the individual groups

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

83

Binary to Octal Conversion

In C notation (the programming language),
we will write:

030711

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

84

Octal or Hex to Binary

How do we perform this type of conversion?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

85

Octal or Hex to Binary

How do we perform this type of conversion?

• For each octal or hex digit, convert to the
binary equivalent (3 or 4 binary digits,
respectively)

• Append the binary digits together

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

86

Binary Notation in C

How would we write a binary constant in C?

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

87

Binary Notation in C

How would we write a binary constant in C?

0b011000111001001

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

88

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

89

Bit-Wise Operators

If A and B are bytes, what does this code
mean?

C = A & B;

The corresponding bits of A and B are
ANDed together

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

90

Bit-Wise AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

? C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

91

Bit-Wise AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

92

Bit-Wise AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

93

Bit-Wise AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

94

Bit-Wise AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 1 1 0 1 0 C = A & B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

95

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

??? C = A && B

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

96

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

??? C = A && B

true

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

97

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

??? C = A && B

true

true

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

98

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

??? C = A && B

true

true

true

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

99

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 0 0 0 0 1 C = A && B

true

true

true

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

100

Logical AND

0 1 0 1 1 1 1 0 A

1 0 0 1 1 0 1 1 B

0 0 0 0 0 0 0 1 C = A && B

NOTE: we are assuming an 8-bit value

true

true

true

Representing Logical Values

Most of the time, we represent logical values
using a multi-bit value. (e.g., using 8 or 16
bits). The rules are:
• A value of zero is interpreted as false
• A non-zero value is interpreted as true

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

101

Representing Logical Values

A logical operator will give a result of true or
false:

• false is represented with a value of zero
(0)

• true is represented with a value of one (1)

Andrew H. Fagg: Embedded Real-
Time Systems: Logic

102

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

103

Other Operators
LOGICAL Bit-Wise

• OR: || |
• NOT: ! ~
• XOR: ^
• Shift left: <<
• Shift right: >>

When coding: keep this distinction straight

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

104

Putting the Bit-Wise Operators
to Work: Bit Manipulation

Assume a variable A is declared as such:
uint8_t A;

What is the code that allows us to set bit 2 of
A to 1? (we start counting bits from 0)

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

105

Bit Manipulation

What is the code that allows us to set bit 2 of
A to 1? (we start counting bits from 0)

A = A | 4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

106

Bit Manipulation

What is the code that allows us to set bit 2 of
A to 0?

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

107

Bit Manipulation
What is the code that allows us to set bit 2 of

A to 0?

A = A & 0xFB;

or

A = A & ~4;

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

108

Bit Shifting

uint8_t A = 0x5A;
uint8_t B = A << 2;
uint8_t C = A >> 5;

What are the values of B and C?
What mathematical operations have we

performed?

