
Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

1

Input/Output Systems

Processor needs to communicate with other
devices:

• Receive signals from sensors
• Send commands to actuators
• Or both (e.g., disks, audio, video devices,

other processors)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

2

I/O Systems

Communication can happen in a variety of
ways:

• Binary parallel signal
• Analog
• Serial signals

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

3

An Example:
SICK Laser Range Finder

• Laser is scanned
horizontally

• Using phase information,
can infer the distance to the
nearest obstacle

• Resolution: ~.5 degrees, 1
cm

• Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

4

Serial Communication
• Communicate a set of bytes using a single

signal line
• We do this by sending one bit at a time:

– The value of the first bit determines the state
of a signal line for a specified period of time

– Then, the value of the 2nd bit is used
– Etc.

Serial Experiment…

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

6

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

7

Serial Communication
The sender and receiver must have some

way of agreeing on when a specific bit is
being sent

• Some cases: the sender will also send a
clock signal (on a separate line)

• Other cases: each side has a clock to tell it
when to write/read a bit
– The sender/receiver must first synchronize

their clocks before transfer begins

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

8

Asynchronous Serial
Communication

• The sender and receiver have their own
clocks, which they do not share

• This reduces the number of signal lines
• Bidirectional transmission, but the two

halves do not need to be synchronized in
time

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

9

Asynchronous Serial
Communication

How can the two sides agree that the data is
valid?

• Must both be operating at essentially the
same transmit/receive frequency

• A data byte is prefaced with a bit of
information that tells the receiver that bits
are coming

• The receiver uses the arrival time of this
start bit to synchronize its clock

10

A Typical Data Frame

The start bit indicates that a byte is coming

11

A Typical Data Frame

The stop bits allow the receiver to
immediately check whether this is a valid
frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

12

Data Frame Handling

Most of the time, we do not deal with the
data frame level. Instead, we rely on:

• Hardware solutions: Universal
Asynchronous Receiver Transmitter
(UART)
– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

16

One (Old) Standard: RS232-C

Defines a logic encoding standard:
• “High” is encoded with a voltage of -5 to -15

(-12 to -13V is typical)
• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

22

RS232 on the Mega2560
Our mega 2560 has FOUR Universal,

Asynchronous serial
Receiver/Transmitters (UARTs):

• Each handles all of the bit-level
manipulation
– Software only worries about the byte level

• Uses 0V and 5V to encode “lows” and
“highs”
– Must convert if talking to a true RS232C

device (+/- 13V)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

23

Mega2560 UART C Interface
Lib C support (standard C):
char fgetc(fp): receive a character

fputc(’a’, fp): put a character out to the port

fputs(”foobar”, fp): put a string out to the port

fprintf(fp, ”foobar %d %s”, 45, ”baz”):
put a formatted string out to the port

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

24

Mega2560 UART C Interface
OUlib support:
fp = serial_init_buffered(1, 38400, 40, 40)

Initialize port one for a transmission rate of 38400 bits per
second (input and output buffers are both 40 characters
long)
Note: declare fp as a global variable:

FILE *fp;

serial_buffered_input_waiting(fp)
Is there a character in the buffer?

See the Atmel HOWTO: examples_2560/serial

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

25

Reading a Byte from the Serial Port

int c;

c=fgetc(fp);

Note: fgetc() “blocks” until a byte is available
• Will only return with a value once a

character is available to be returned

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

Processing Serial Input

serial_buffered_input_waiting(fp) tells us whether a byte
is ready to be read

int c;
while(1) {
if(serial_buffered_input_waiting(fp)) {

// A character is available for reading
c = fgetc(fp);
<do something with the character>

}
<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

27

Mega2560 UART C Interface

Also available:
• fscanf(): formatted input

See the LibC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

29

Character Representation

• A “char” is just an 8-bit number
• This allows us to perform meaningful

mathematical operations on the characters

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

30

Character
Representation:

ASCII

Buffers

A buffer is an array that temporarily stores
data in sequential order

fp = serial_init_buffered(1, 38400, 40, 40)

• Declares both the input and output buffer
sizes to be 40 bytes

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

31

Output Buffer

• Any characters that are produced (e.g.,
with fputc() or fprintf()) are first placed in
the output buffer

• Then, the serial hardware removes one
byte at a time to send it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

32

Output Buffer

• Advantage: fputc() and fprintf() don’t have
to wait for the bytes to be transmitted
– Your program can keep doing the rest of its

job
• But: if the buffer fills up, these functions

will block until there is space
– You must choose your buffer size somewhat

carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

33

Input Buffer

Temporary storage of bytes as they are
received
• Your program can read these bytes at its

leisure
• With OULIB: if the buffer fills up, then

additional bytes will be lost

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

34

Last Time: Serial Communication
and the ASCII Representation

• Serial Communication: ?

• ASCII: ?

• Output Buffer: ?

• Input Buffer: ?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

35

Last Time: Serial Communication
and the ASCII Representation

• Serial Communication: Communicating a
byte (or multiple) by sending one bit at a
time

• ASCII: translation between binary
numbers and glyphs

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

36

Last Time: Serial Communication
and the ASCII Representation

• Output Buffer: Temporary storage of
outgoing characters (bytes!) until the
UART can send them

• Input Buffer: Temporary storage of
incoming characters until they can be used
by the program

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

37

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

38

Physical Interface
Four matched pairs of transmit and receive

pins (TX? and RX?)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

39

Physical Interface
Port 0 is also connected to the USB port

See “hyperterm” on downloads page

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

40

Mega8
UART

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

41

Mega8
UART

• Transmit pin
(PD1)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

42

Mega8
UART

• Transmit pin
(PD1)

• Transmit
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

43

Writing a Byte to the Serial Port

putchar(‘A’);

(assuming trivial input/output buffers for this
illustration)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

44

Transmit

putchar(‘A’);
01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

45

Transmit

When UART
is ready, the
buffer
contents are
copied to
the shift
register

01000001

01000001

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

46

Transmit

The least
significant bit
(LSB) of the
shift register
determines
the state of
the pin

01000001 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

47

Transmit

After a delay, the
UART shifts
the values to
the right

x = value doesn’t
matter

x0100000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

48

Transmit

Next shift

xx010000 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

49

Transmit

Several shifts
later…

xxxxxx01 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

50

Receive

• Receive pin
(PD0)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Receive

• Receive pin
(PD0)

• Receive
shift register

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

52

Receive

• “1” on the pin
• Shift register

initially in an
unknown
state xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

53

Receive

“1” is
presented to
the shift
register

xxxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

54

Receive

“1” is shifted
into the most
significant bit
(msb) of the
shift register 1xxxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

55

Receive

Next bit is
shifted in

11xxxxxx 1

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

56

Receive

And the next
bit…

011xxxxx 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

57

Receive

And the 8th bit

01101011 0

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

58

Receive

Completed byte
is stored in
the UART
buffer

01101011 0

01101011

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

59

Reading a Byte from the Serial Port

int c;

c=getchar();

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

60

Receive

getchar()
retrieves this
byte from the
buffer

0

01101011

Serial Challenge
• Suppose that we know that we will be

receiving a sequence of 3 decimal digits
from the serial port

• How do we translate these digits into an
integer representation?

• Bonus: what if we don’t know how many
digits are coming? (we read digits until a
non-digit is read)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

61

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

62

Character
Representation:

ASCII

