
Sensor Processing
So far, our code looks something like this:

while(1) {

<read some sensors>

<respond to the sensor input>

<read some other sensors>

<respond to the sensor input>

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

1

Sensor Processing

• Sometimes, this is sufficient

• Other times:

– We need to respond to certain events very

quickly, or

– We need to time events very carefully

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

2

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

3

Interrupts

• Hardware mechanism that allows some

event to temporarily interrupt an ongoing

task

• The processor then executes a small

piece of code called: interrupt handler or

interrupt service routine (ISR)

• Execution then continues with the original

program

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

4

Some Sources of Interrupts

(atmega2560)

External:

• An input pin changes state

• The UART receives a byte on a serial input

Internal:

• A clock

• Processor reset

• The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

5

Interrupt Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

6

An Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

7

An Example

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

8

An Example

An interrupt occurs (EXT_INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

9

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

10

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

11

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

12

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

13

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

14

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

15

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

16

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

17

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

18

Interrupt Service Routines

Generally a very small number of

instructions

• We want a quick response so the

processor can return to what it was

originally doing

• No delays, waits, or floating point

operations in the ISR…

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

19

Timer 0 Interrupt

We can configure the timer to generate an

interrupt every time that the timer’s

counter “rolls over” from 0xFF to 0x00

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

20

Timer 0 Interrupt Example

Suppose:

• 16MHz clock

• Prescaler of 1024

How often is the interrupt generated?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

21

Timer 0 Example

msinterval 384.16

000,000,16

256*1024


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

22

Timer 0

Interrupt Service Routine (ISR)

An ISR is a type of function that is called

when the interrupt is generated

ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B

PORTB ^= 1;

};

What is the flash frequency?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

23

Timer 0

Interrupt Service Routine (ISR)

ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B

PORTB ^= 1;

};

What is the flash frequency?

Hzfrequency 5176.30

2*256*1024

000,000,16


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

24

Example I:

ISR Initialization in Main Program

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds

timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();

while(1) {

// Do something else

};

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

25

Timer 0 with Interrupts

This solution is particularly nice:

• “something else” does not have to worry

about timing at all

• PB0 state is altered asynchronously from

what is happening in the main program

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

26

Next Example: Timer 0 Example II

msinterval 384.16

000,000,16

256*1024


How many interrupts do we need so that we

toggle the state of PB0 every second?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

27

Timer 0 Example II

0352.61

384.16

1000


ms

ms
counts

How many interrupts do we need so that we

toggle the state of PB0 every second?

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

28

Example II: Interrupt Service

Routine (ISR)
ISR(TIMER0_OVF_vect) {

static uint8_t counter = 0;

++counter;

if(counter == 61) {

// Toggle output state every 61st interrupt:

// This means: on for ~1 second and then off for ~1 sec

PORTB ^= 1;

counter = 0;

};

};

See Atmel HOWTO for example code

(timer_demo.c)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

29

Example II: Interrupt Service

Routine (ISR)
ISR(TIMER0_OVF_vect) {

static uint8_t counter = 0;

++counter;

if(counter == 61) {

// Toggle output state every 61st interrupt:

// This means: on for ~1 second and then off for ~1 sec

PORTB ^= 1;

counter = 0;

};

};

See Atmel HOWTO for example code

(timer_demo.c)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

30

Example II: Initialization

(same as before)
// Initialize counter

counter = 0;

// Interrupt occurs every (1024*256)/16000000 = .016384 seconds

timer0_config(TIMER0_PRE_1024);

// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();

while(1) {

// Do something else

};

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

31

Timer 0 Example II

What is the flash frequency?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

32

Timer 0 Example II

What is the flash frequency?

Hzfrequency 5.0

2*61*256*1024

000,000,16


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

33

Interrupts and Timers

Timing can often involve a cascade of

multiple counters:

• prescaler (1 … 1024)

• Timer0 (256)

• Counter within an interrupt routine (any)

Each counter implements a frequency

division

Generating a PWM Signal in

Software
How would we do this?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

38

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

39

Generating a PWM Signal in

Software
We need:

• To produce a periodic behavior, and

• A way to specify the pulse width (or the

duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

40

Generating a PWM Signal in

Software
How do we implement this in code?

One way:

• Interrupt routine increments an 8-bit

software counter

• When the counter is 0, turn the signal on

• When the counter reaches some

“duration”, turn the signal off

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

41

Our Implementation

volatile uint8_t duration = 42;

ISR(TIMER0_OVF_vect)

{

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

42

Another Implementation

volatile uint8_t duration = 0;

ISR(TIMER0_OVF_vect)

{

static uint8_t counter = 0;

++counter;

if(counter >= duration)

PORTB &= ~8;

else if(counter == 0)

PORTB |= 8;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

43

Initialization Details

• Set up timer

• Enable interrupts

• Set duration in some way

– In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

44

Initialization
int main(void) {

DDRB = 0x08;

PORTB = 0;

duration = 0;

// Interrupt configuration

timer0_config(TIMER0_PRE8); // Prescaler = 8

// Enable the timer interrupt

timer0_enable();

// Enable global interrupts

sei();

:

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

45

PWM Implementation

What is the resolution (how long is one

increment of “duration”)?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

46

PWM Implementation

What is the resolution (how long is one increment

of “duration”)?

• The timer0 counter (8 bits) expires every 256

clock cycles

(assuming a 16MHz clock)

mst 128.0

16000000

2568





Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

47

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

48

PWM Implementation

What is the period of the pulse?

• The 8-bit software counter expires every 256

interrupts

mst 77.32

16000000

256*256*8


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

49

Doing “Something Else”
:

unsigned int i;

while(1) {

for(i = 0; i < 256; ++i)

duration = i;

delay_ms(50);

};

};

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

51

ISR Example III

ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B

PORTB ^= 1;

};

int main(void){

timer0_config(TIMER0_PRE_8);

timer0_enable();

sei();

while(1) {

// Do something else

}; What is the flash frequency?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

52

Timer 0 Example III

What is the flash frequency?

KHzfrequency 9.3

2*256*8

000,000,16


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

53

ISR Example III:

How about this case?
ISR(TIMER0_OVF_vect) {

// Toggle the LED attached to bit 0 of port B

PORTB ^= 1;

timer0_set(128); // Set the timer0 counter to 128

};

int main(void){

timer0_config(TIMER0_PRE_8);

timer0_enable();

sei();

while(1) {

// Do something else

};
What is the flash frequency?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

54

Timer 0 Example III

What is the flash frequency?

KHzfrequency 8.7

2*128*8

000,000,16


Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

55

Different Timers

• Timer 0

• Timer 1, 3, 4, 5

• Timer 2

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

56

Interrupt Service Routines

• Should be very short

– No “delays”

– No busy waiting

– Function calls from the ISR should be short
also

– Minimize looping

– No “printf()”

• Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

57

Interrupts, Shared Data

and Compiler Optimizations

• Compilers (including ours) will often

optimize code in order to minimize

execution time

• These optimizations often pose no

problems, but can be problematic in the

face of interrupts and shared data

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

58

Shared Data and Compiler

Optimizations

For example:

A = A + 1;

C = B + A

Will result in ‘A’ being fetched from memory

once (into a general-purpose register) –

even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

59

Shared Data and Compiler

Optimizations

Now consider:

while(1) {

PORTB = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

60

Shared Data and Compiler

Optimizations
The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:

R1 = A; // Fetch value of A into register 1

while(1) {

PORTB = R1;

}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

61

Shared Data and Compiler

Optimizations

This optimization is generally fine – but

consider the following interrupt routine:

ISR(TIMER0_OVF_vect){

A = PIND;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

62

Shared Data and Compiler

Optimizations

This optimization is generally fine – but

consider the following interrupt routine:

ISR(TIMER0_OVF_vect){

A = PIND;

}

• The global variable ‘A’ is being changed!

• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

63

Shared Data and Compiler

Optimizations

The fix: the programmer must tell the

compiler that it is not allowed to assume

that a memory location is not changing

• This is accomplished when we declare the

global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

64

Shared Data and Compiler

Optimizations
volatile uint8_t A;

This will cause the compiler to do this:

while(1) {

R1 = A; // Fetch value of A into reg 1

PORTB = R1;

}

The compiler only fetches A from memory every time it needs
it!

Shared Data and Interrupts

• Recall: the data bus on the mega2560 is 8

bits wide

• A byte can be transferred in one cycle

• Any data structure larger than a byte

requires multiple transfers

When there are interrupts: this can lead to

subtle (but very real) problems

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

65

For example:

uint16_t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

66

For example:

uint16_t a;

a = a + 5;

Steps:

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

67

Suppose that an ISR routine views and then

modifies the variable a …

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

68

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

69

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• ISR changes a, but main program still

uses old value

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

70

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

71

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• The ISR “sees” the new value of the low

byte and the old value of the high byte

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

72

Solution?

One possibility:

• If the main program is working with a, then

it can temporarily disable interrupts while it

does this operation

• Note: it should not disable interrupts for

very long

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

73

Turning off Interrupts

uint16_t a;

:

:

cli; // Turn off interrupts

a = a + 5;

sei; // Turn them back on

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

74

Shared Data Problems

• Any time that the main program and the

ISR both view/operate on a global

variable, the potential exists for these

shared data problems

• Always a problem if the variable is larger

than a single byte

• Some single byte variables are a problem,

but not all are (it depends on how they are

used)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

75

Turning off Interrupts

• Always turn off for the shortest time

possible

• There are some cases in which interrupts

do not need to be turned off for things to

work properly

– E.g., our “flag” in project 4

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

76

Next Time

• Final Exam

• Preparation: email/post questions

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

77

