Sensor Processing
So far, our code looks something like this:

while (1) {
<read some sensors>
<respond to the sensor 1nput>
<read some other sensors>

<respond to the sensor 1nput>

Andrew H. Fagg: Embedded Real- 1
Time Systems: Interrupts

Sensor Processing

e Sometimes, this Is sufficient

e Other times:

— We need to respond to certain events very
quickly, or

— We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes a small
piece of code called: interrupt handler or
Interrupt service routine (ISR)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Some Sources of Interrupts
(atmega2560)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
* Processor reset

* The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupt Example

Suppose we are executing code
from your main program:

LDS R1 (A)<4— PC
LDS R2 (B)
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2,R1 < PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example
An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 auewn. ragy embedded rea-

Time Systems: Interrupts

An Example

Execute the Interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

» BRGE 3
DS R3 ('D)\ remember this location

ADD R3, R1
STS (D)1 R3 Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

An Example

Execute the Interrupt handler
EXT INTI1:

LDS R1 (A
@) PC —”LDS R1 (G)

LDS R2 (V
P R2 R LDS R5 (L)

» BRGE 3 Y ADDR1, R2
LDS R3 (D) '
ADD R3. R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 10

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI PC —»LDS R5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 11

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 12

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 . _»ADD.Rl, R2
LDS R3 (D) '
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 13

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

DS R? (B) LDS R1 (G)
CP R2, R1 LDSR5 (L)
> ERGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 14

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 «— PC
DS R3 (D)\ :
ADD R3, R1 RETI
STS (D), R3 sewt ragg: Embedded real s

Time Systems: Interrupts

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI LDS R5 (L)
SRGE 3 ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 16

Time Systems: Interrupts

An Example

Continue execution with original

EXT INTL:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle— PC
STS (D)1 R3 Andrew H. Fagg: Embedded Real- 17

Time Systems: Interrupts

Interrupt Service Routines

Generally a very small number of
Instructions

* We want a quick response so the
processor can return to what it was
originally doing

* No delays, walts, or floating point
operations in the ISR...

Andrew H. Fagg: Embedded Real- 18
Time Systems: Interrupts

Timer O Interrupt

We can configure the timer to generate an
interrupt every time that the timer’s
counter “rolls over” from OxFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Timer O Interrupt Example

Suppose:
« 16MHZz clock
 Prescaler of 1024

How often Is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

20

Interval

Timer 0 Example

1024 > 256

=16 .384 ms

16 ,000 ,000

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

21

Timer O
Interrupt Service Routine (ISR)

An ISR Is a type of function that is called
when the interrupt Is generated

ISR(TIMERO_OVF_vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1,;

%

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

22

Timer O

Interrupt Service Routine (ISR)

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1,

What is the flash frequency?

16 ,000 ,000
frequency = = 30 .5176

1024 * 256 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Hz

23

Example I
ISR Initialization in Main Program

/[Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timerO_config(TIMERO PRE_1024);

/[Enable the timer interrupt
timerO_enable();

/[Enable global interrupts
sei();

while(1) {
// Do something else

%

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

24

Timer O with Interrupts

This solution Is particularly nice:

 "something else” does not have to worry
about timing at all

 PBO state Is altered asynchronously from
what Is happening in the main program

Andrew H. Fagg: Embedded Real- 25
Time Systems: Interrupts

Next Example: Timer 0 Example Il

1024 * 256
Interval = = 16 .384 ms

16 ,000 ,000

How many interrupts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real- 26
Time Systems: Interrupts

Timer 0 Example |

low many interrupts do we need so that we
toggle the state of PBO every second?

1000 ms

counts = 61 .0352

16 .384 ms

We will assume 61 is close enough.

Andrew H. Fagg: Embedded Real- 27
Time Systems: Interrupts

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO _OVF _vect) {

static uint8_t counter = 0;

++counter;

If(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB "= 1;
counter = 0;

See Atmel HOWTO for example code
(t| mer_demo _Aci)ew H. Fagg: Embedded Real-

Time Systems: Interrupts

28

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO _OVF _vect) {
static uint8_t counter = 0;

++counter;

If(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB ~=1;
counter = 0;

%

%

See Atmel HOWTO for example code
(t| mer_demo _Aci)ew H. Fagg: Embedded Real-

Time Systems: Interrupts

29

Example Il: Initialization
(same as before)

/I Initialize counter
counter = 0;

/I Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024);

/[Enable the timer interrupt
timerO_enable();

I/l Enable global interrupts
sei();

while(1) {
// Do something else
I3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

30

Timer 0 Example |

What Is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

31

Timer 0 Example |

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 0.5 Hz

1024 * 256 * 61 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

32

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

» prescaler (1 ... 1024)
* Timer0 (256)
» Counter within an interrupt routine (any)

Each counter implements a frequency
division

Andrew H. Fagg: Embedded Real- 33
Time Systems: Interrupts

Generating a PWM Signal In
Software
How would we do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

38

Generating a PWM Signal In

Software
We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 39
Time Systems: Interrupts

Generating a PWM Signal In
Software
How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
software counter

* When the counter is O, turn the signal on

 \WWhen the counter reaches some
“duration”, turn the signal off

Andrew H. Fagg: Embedded Real- 40
Time Systems: Interrupts

Our Implementation

volatile uint8 t duration = 42;

ISR (TIMERO OVF vect)
{

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

41

Another Implementation

volatile uint8 t duration = 0;

ISR (TIMERO OVF vect)
{

static uint8 t counter = 0;

++counter;

if (counter >= duration)
PORTB &= ~8;

else 1f (counter == 0)
PORTB |= 8;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

42

Initialization Detalls

« Set up timer
* Enable interrupts

« Set duration In some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

43

Initialization

int main(void) {
DDRB = 0x08;
PORTB = 0;

duration = 0;

// Interrupt configuration
timer0 config (TIMERO PRE8); // Prescaler

// Enable the timer interrupt
timer0 enable () ;

// Enable global interrupts
sei();

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

8

44

PWM Implementation

What Is the resolution (how long Is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

45

PWM Implementation

What is the resolution (how long is one increment
of “duration™)?

* The timerO counter (8 bits) expires every 256
clock cycles

8 x 256
t = = 0.128 ms

16000000

(assuming a 16MHz clock)

Andrew H. Fagg: Embedded Real- 46
Time Systems: Interrupts

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

a7

PWM Implementation

What is the period of the pulse?

« The 8-bit software counter expires every 256
Interrupts

8 * 256 * 256
t = ~ 32 .77 ms
16000000
Andrew H. Fagg: Embedded Real- 48

Time Systems: Interrupts

Doing “Something Else”

unsigned int 1;

while (1) {
for(1 = 0, 1 < 256; ++1)
duration = 1;

delay ms (50) ;
I
I

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

49

ISR Example Il

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

I3

int main(void){
timerO_config(TIMERO _PRE_8);
timerO_enable();
sei();

while(1) {
// Do something else

} What is the flash frequency?

Andrew H. Fagg: Embedded Real- 51
Time Systems: Interrupts

Timer 0 Example Il

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 3.9 KHz

8 * 256 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

52

ISR Example llI:
How about this case?

ISR(TIMERO_OVF _vect) {

// Toggle the LED attached to bit O of port B

PORTB "= 1;

timerQO_set(128); // Set the timer0 counter to 128
3

int main(void){
timerO_config(TIMERO _PRE_8);
timerO_enable();
sei();

while(1) {
/I Do something else What is the flash frequency?
3

Andrew H. Fagg: Embedded Real- 53
Time Systems: Interrupts

Timer 0 Example Il

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 7.8 KHz

8 *128 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

54

Different Timers

e Timer O
e Timer1l, 3,4,5
e Timer 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

55

Interrupt Service Routines

« Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
— No “printf()”

« Communication with the main program
using global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

56

Interrupts, Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code In order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

57

Shared Data and Compller
Optimizations

For example:
A=A+ 1;
C =B+ A

Will result in ‘A’ being fetched from memory
once (Iinto a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

58

Shared Data and Compller
Optimizations

Now consider:

while (1) {
PORTB = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

59

Shared Data and Compller
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1)
PORTB = R1;

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 60
Time Systems: Interrupts

Shared Data and Compller
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

ISR(TIMERO OVF vect) {
A = PIND;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

61

Shared Data and Compller
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF vect) {
A = PIND;
}
* The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 62
Time Systems: Interrupts

Shared Data and Compller
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This i1s accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real- 63
Time Systems: Interrupts

Shared Data and Compller
Optimizations

volatile uint8_t A,

This will cause the compiler to do this:

while (1) {
R1 = A; // Fetch value of A into reg 1
PORTB = R1;

The compiler only fetches A from memory every time it needs
it!

Andrew H. Fagg: Embedded Real- 64
Time Systems: Interrupts

Shared Data and Interrupts

* Recall: the data bus on the mega2560 is 8
bits wide

* A byte can be transferred in one cycle

* Any data structure larger than a byte
requires multiple transfers

When there are interrupts: this can lead to
subtle (but very real) problems

Andrew H. Fagg: Embedded Real- 65
Time Systems: Interrupts

For example:
uintlo t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

66

For example:
uintlo t a;
a = a + 5;
Steps:

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 67
Time Systems: Interrupts

Suppose that an ISR routine views and then
modifies the variable a ...

Andrew H. Fagg: Embedded Real- 68
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 69
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* ISR changes a, but main program still
uses old value

Andrew H. Fagg: Embedded Real- 70
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 71
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* The ISR "sees” the new value of the low
byte and the old value of the high byte

Andrew H. Fagg: Embedded Real- 72
Time Systems: Interrupts

Solution?

One possibllity:

* If the main program is working with a, then
It can temporarily disable interrupts while it
does this operation

* Note: it should not disable interrupts for
very long

Andrew H. Fagg: Embedded Real- 73
Time Systems: Interrupts

Turning off Interrupts

uintlo t a;

cli;

a + 5;

o)
I

sei;

// Turn off interrupts

// Turn them back on

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

74

Shared Data Problems

* Any time that the main program and the
ISR both view/operate on a global
variable, the potential exists for these
shared data problems

» Always a problem if the variable is larger
than a single byte

« Some single byte variables are a problem,

but not all are (it depends on how they are
used)

Andrew H. Fagg: Embedded Real- 75
Time Systems: Interrupts

Turning off Interrupts

 Always turn off for the shortest time
possible

* There are some cases in which interrupts
do not need to be turned off for things to
work properly

— E.qg., our “flag” in project 4

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

76

Next Time

* Final Exam
* Preparation: email/post questions

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

77

