
Serial Communication

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

1

• Exam

• Project 5 code reviews

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

2

Questions?

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

3

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

5

Input/Output Systems

Processor needs to communicate with other

devices:

• Receive signals from sensors

• Send commands to actuators

• Or both (e.g., disks, audio, video devices,

other processors)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

6

I/O Systems

Communication can happen in a variety of

ways:

• Binary parallel signal

• Analog

• Serial signals

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

7

An Example:

SICK Laser Range Finder

• Laser is scanned

horizontally

• Using phase information,

can infer the distance to the

nearest obstacle

• Resolution: ~.5 degrees, 1

cm

• Can handle full 180 degrees

at 20 Hz

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

8

Serial Communication
• Communicate a set of bytes using a single

signal line

• We do this by sending one bit at a time:

– The value of the first bit determines the state

of a signal line for a specified period of time

– Then, the value of the 2nd bit is used

– Etc.

Serial Experiment…

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

10

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

11

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit is
being sent

• Some cases: the sender will also send a
clock signal (on a separate line)

• Other cases: each side has a clock to tell it
when to write/read a bit

– The sender/receiver must first synchronize
their clocks before transfer begins

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

13

Asynchronous Serial

Communication

• The sender and receiver have their own

clocks, which they do not share

• This reduces the number of signal lines

But: we still need some way to agree that

data is valid. How?

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

14

Asynchronous Serial

Communication
How can the two sides agree that the data is

valid?

• Must both be operating at essentially the

same transmit/receive frequency

• A data byte is prefaced with a bit of

information that tells the receiver that bits

are coming

• The receiver uses the arrival time of this

start bit to synchronize its clock

15

A Typical Data Frame

The start bit indicates that a byte is coming

16

A Typical Data Frame

The stop bits allow the receiver to

immediately check whether this is a valid

frame

• If not, the byte is thrown away

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

17

Data Frame Handling

Most of the time, we do not deal with the

data frame level. Instead, we rely on:

• Hardware solutions: Universal

Asynchronous Receiver Transmitter

(UART)

– Very common in computing devices

• Software solutions in libraries

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

18

One (Old) Standard: RS232-C

Defines a logic encoding standard:

• “High” is encoded with a voltage of -5 to -15

(-12 to -13V is typical)

• “Low” is encoded with a voltage of 5 to 15

(12 to 13V is typical)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

19

RS232 on the Mega2560
Our mega 2560 has FOUR Universal,

Asynchronous serial
Receiver/Transmitters (UARTs):

• Each handles all of the bit-level
manipulation

– Software only worries about the byte level

• Uses 0V and 5V to encode “lows” and
“highs”

– Must convert if talking to a true RS232C
device (+/- 13V)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

20

Mega2560 UART C Interface

Lib C support (standard C):

char fgetc(fp): receive a character

fputc(’a’, fp): put a character out to the port

fputs(”foobar”, fp): put a string out to the port

fprintf(fp, ”foobar %d %s”, 45, ”baz”):

put a formatted string out to the port

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

21

Mega2560 UART C Interface
OUlib support:

fp = serial_init_buffered(1, 38400, 40, 40)

Initialize port one for a transmission rate of 38400 bits per
second (input and output buffers are both 40 characters
long)

Note: declare fp as a global variable:

FILE *fp;

serial_buffered_input_waiting(fp)

Is there a character in the buffer?

See the Atmel HOWTO: examples_2560/serial

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

22

Reading a Byte from the Serial Port

int c;

c=fgetc(fp);

Note: fgetc() “blocks” until a byte is available

• Will only return with a value once a

character is available to be returned

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

23

Processing Serial Input

serial_buffered_input_waiting(fp) tells us whether a byte
is ready to be read

int c;

while(1) {

if(serial_buffered_input_waiting(fp)) {

// A character is available for reading

c = fgetc(fp);

<do something with the character>

}

<do something else while waiting>

}

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

24

Mega2560 UART C Interface

Also available:

• fscanf(): formatted input

See the LibC documentation or the AVR C

textbook

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

25

Character Representation

• A “char” is just an 8-bit number

• This allows us to perform meaningful

mathematical operations on the characters

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

26

Character

Representation:

ASCII

Buffers

A buffer is an array that temporarily stores

data in sequential order

fp = serial_init_buffered(1, 38400, 40, 40)

• Declares both the input and output buffer

sizes to be 40 bytes

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

27

Output Buffer

• Any characters that are produced (e.g.,

with fputc() or fprintf()) are first placed in

the output buffer

• Then, the serial hardware removes one

byte at a time to send it

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

28

Output Buffer

• Advantage: fputc() and fprintf() don’t have

to wait for the bytes to be transmitted

– Your program can keep doing the rest of its

job

• But: if the buffer fills up, these functions

will block until there is space

– You must choose your buffer size somewhat

carefully

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

29

Input Buffer

Temporary storage of bytes as they are

received

• Your program can read these bytes at its

leisure

• With OULIB: if the buffer fills up, then

additional bytes will be lost

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

30

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

31

Physical Interface

Four matched pairs of transmit and receive

pins (TX? and RX?)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

32

Physical Interface

Port 0 is also connected to the USB port

See “realterm” on downloads page

Serial Challenge
• Suppose that we know that we will be

receiving a sequence of 3 decimal digits

from the serial port

• How do we translate these digits into an

integer representation?

• Bonus: what if we don’t know how many

digits are coming? (we read digits until a

non-digit is read)

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

54

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

55

Character

Representation:

ASCII

Next Time

• Project 6

Andrew H. Fagg: Embedded Real-

Time Systems: Serial Comm

56

