
Binary Representations, 
Serial Communication 

and the Atmel 2560



Administration…

• Top Hat or Zyante problems?

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Questions?

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Atmel Mega2560 Microcontroller

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Atmel 
Mega2560



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Atmel 
Mega2560

Pins are organized 
into 8-bit “Ports”:

• A, B, C … L
• But no “I”



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Digital Input/Output

• Each port has three special-purpose registers that 
control its behavior.

• Each pin can either be an input or output!

• For port B, they are:
• DDRB: data direction register B

• PORTB: port output register B

• PINB: port input B



Data Direction Register: DDRx

• 8-bit wide register
• Controls one pin with each bit

• 0 -> this is an input pin

• 1 -> this is an output pin

• Note: only configure pins as an output if you really mean 
it!

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Port Output Register: PORTx

• Also one pin per bit

• If configured as an output:
• 0 -> the pin is held at 0 V  

• 1 -> the pin is held at +5 V

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Port INput register: PINx

• One pin per bit

• Reading from the register:
• 0 -> the voltage of the pin is near 0 V

• 1 -> the voltage of the pin is near +5 V

• If nothing is connected to the pin, then the pin will 
appear to be in a random state

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A First 
Circuit

+5V

GND



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A First 
Program

Flash the 
LEDs at a 
regular 
interval

• How do we 
do this?

+5V

GND



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A First Program
main() {

DDRC = ???;

while(1)

{

}

}



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A First Program
main() {

DDRC = 0x3;

while(1) {

PORTC = 0x1;  // sets PC0 to 1

delay_ms(100);

PORTC = 0x0;  // set PC0 to 0

delay_ms(100);

}

}



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A Second Program
main() {

DDRC = 3;   // Set port C pins 0, and 1 as outputs

while(1) {

PORTC = 0x3;

delay_ms(250);         

PORTC = 0x1; 

delay_ms(250);

PORTC = 0x2;

delay_ms(250);

PORTC = 0x0;

delay_ms(250);

}

}

What does this program do?



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A Second Program
main() {

DDRC = 3;   // Set port C pins 0, and 1 as outputs

while(1) {

PORTC = 0x3;

delay_ms(250);         

PORTC = 0x1; 

delay_ms(250);

PORTC = 0x2;

delay_ms(250);

PORTC = 0x0;

delay_ms(250);

}

}

Flashes LED on PC1  at 2 Hz
on PC0: 1 Hz

Duty Cycle for each: 50%



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Port-Related Registers

Some of the C-accessible registers for controlling digital I/O:

Directional 

control

Writing Reading

Port B DDRB PORTB PINB

Port C DDRC PORTC PINC

Port D DDRD PORTD PIND



… go to Bit Manipulation

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A Third 
Program

If switch reads 
zero, turn 
PC0 on and 
PC1 off

Otherwize, 
turn PC0 off 
and PC1 on

+5V

GND



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A Third Program
main() {

DDRC = 0x3;

while(1)

{

}

}



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

A Third Program
main() {

DDRC = 0x3;

while(1)

{

if(PINC & 0x80) {

PORTC = 0x2;

}else{

PORTC = 0x1;

}

}

}



Arduino Mega Board

(see schematic)

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Quiz

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Input/Output Systems

Processor needs to communicate with other devices:

• Receive signals from sensors

• Send commands to actuators

• Or both (e.g., disks, audio, video devices, other 
processors)



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

I/O Systems

Communication can happen in a variety of ways:

• Binary parallel signal

• Analog

• Serial signals 



Andrew H. Fagg: Embedded Real-Time Systems: Digital IO

Serial Communication
• Communicate a set of bytes using a single 

signal line

• We do this by sending one bit at a time:
• The value of the first bit determines the state 

of a signal line for a specified period of time

• Then, the value of the 2nd bit is used

• Etc.



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 32

Serial Communication on the Mega2560

Our mega 2560 has FOUR Universal, 
Asynchronous serial Receiver/Transmitters 
(UARTs):

• Each handles all of the bit-level 
manipulation

• Your software only worries about the byte level

• UART #1 is attached to the USB 
connection between the Arduino board and 
your laptop



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 33

Mega2560 UART C Interface

Lib C support (standard C):

char fgetc(fp): receive a character

fputc(’a’, fp): put a character out to the port 

fputs(”foobar”, fp): put a string out to the port 

fprintf(fp, ”foobar %d %s”, 45, ”baz”): 

put a formatted string out to the port



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 34

Mega2560 UART C Interface
OUlib support:

fp = serial_init_buffered(1, 38400, 40, 40)

Initialize port one for a transmission rate of 38400 bits per second 
(input and output buffers are both 40 characters long)

Note: declare fp as a global variable:

FILE *fp;

serial_buffered_input_waiting(fp)

Is there a character in the buffer?

See the Atmel HOWTO: examples_2560/serial



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 35

Reading a Character from the Serial Port

int c;

c=fgetc(fp);

Note: fgetc() “blocks” until a byte is available

• Will only return with a value once a character is 
available to be returned



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 36

Processing Serial Input

serial_buffered_input_waiting(fp) tells us whether a byte 
is ready to be read

int c;

while(1) {

if(serial_buffered_input_waiting(fp)) {

// A character is available for reading

c = fgetc(fp);

<do something with the character>

}

<do something else while waiting>

}



Andrew H. Fagg: Embedded Real-Time Systems: Serial Comm 37

Mega2560 UART C Interface

Also available:

• fscanf(): formatted input

See the LibC documentation or the AVR C 
textbook



Next Time

Project 0: compiling and downloading for the mega 2560

Andrew H. Fagg: Embedded Real-Time Systems: Digital IO


