Sensor Processing
So far, our code looks something like this:

while (1) {
<read some sensors>
<respond to the sensor 1nput>
<read some other sensors>

<respond to the sensor 1nput>

Andrew H. Fagg: Embedded Real- 1
Time Systems: Interrupts

Sensor Processing

e Sometimes, this Is sufficient

e Other times:

— We need to respond to certain events very
quickly, or

— We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes a small
piece of code called: interrupt handler or
Interrupt service routine (ISR)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Some Sources of Interrupts
(atmega2560)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
* Processor reset

* The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupt Example

Suppose we are executing code
from your main program:

LDS R1 (A)<4— PC
LDS R2 (B)
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2,R1 < PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example
An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 auewn. ragy embedded rea-

Time Systems: Interrupts

An Example

Execute the Interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

» BRGE 3
DS R3 ('D)\ remember this location

ADD R3, R1
STS (D)1 R3 Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

An Example

Execute the Interrupt handler
EXT INTI1:

LDS R1 (A
@) PC —”LDS R1 (G)

LDS R2 (V
P R2 R LDS R5 (L)

» BRGE 3 Y ADDR1, R2
LDS R3 (D) '
ADD R3. R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 10

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI PC —»LDS R5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 11

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 12

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 . _»ADD.Rl, R2
LDS R3 (D) '
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 13

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

DS R? (B) LDS R1 (G)
CP R2, R1 LDSR5 (L)
> ERGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 14

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 «— PC
DS R3 (D)\ :
ADD R3, R1 RETI
STS (D), R3 sewt ragg: Embedded real s

Time Systems: Interrupts

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI LDS R5 (L)
SRGE 3 ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 16

Time Systems: Interrupts

An Example

Continue execution with original

EXT INTL:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle— PC
STS (D)1 R3 Andrew H. Fagg: Embedded Real- 17

Time Systems: Interrupts

Interrupt Service Routines

Generally a very small number of
Instructions

* We want a quick response so the
processor can return to what it was
originally doing

* No delays, walts, or floating point
operations in the ISR...

Andrew H. Fagg: Embedded Real- 18
Time Systems: Interrupts

Timer O Interrupt

We can configure the timer to generate an
interrupt every time that the timer’s
counter “rolls over” from OxFF to 0x00

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Timer O Interrupt Example

Suppose:
« 16MHZz clock
 Prescaler of 1024

How often Is the interrupt generated?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

20

Interval

Timer 0 Example

1024 > 256

=16 .384 ms

16 ,000 ,000

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

21

Timer O
Interrupt Service Routine (ISR)

An ISR Is a type of function that is called
when the interrupt Is generated

ISR(TIMERO_OVF_vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1,;

%

What is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

22

Timer O

Interrupt Service Routine (ISR)

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1,

What is the flash frequency?

16 ,000 ,000
frequency = = 30 .5176

1024 * 256 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Hz

23

Example I
ISR Initialization in Main Program

/[Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timerO_config(TIMERO PRE_1024);

/[Enable the timer interrupt
timerO_enable();

/[Enable global interrupts
sei();

while(1) {
// Do something else

%

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

24

Timer O with Interrupts

This solution Is particularly nice:

 "something else” does not have to worry
about timing at all

 PBO state Is altered asynchronously from
what Is happening in the main program

Andrew H. Fagg: Embedded Real- 25
Time Systems: Interrupts

Next Example: Timer 0 Example Il

1024 * 256
Interval = = 16 .384 ms

16 ,000 ,000

How many interrupts do we need so that we
toggle the state of PBO every second?

Andrew H. Fagg: Embedded Real- 26
Time Systems: Interrupts

Timer 0 Example |

low many interrupts do we need so that we
toggle the state of PBO every second?

1000 ms

counts = 61 .0352

16 .384 ms

We will assume that 61 Is close enough.

Andrew H. Fagg: Embedded Real- 27
Time Systems: Interrupts

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO _OVF _vect) {
static uint8_t counter = 0;
++counter;
if(counter == 61){

counter = 0;
PORTB "= 1;
}
I3

See Atmel HOWTO for example code
(timer_demo.c)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

28

Example Il: Interrupt Service
Routine (ISR)

ISR(TIMERO _OVF _vect) {
static uint8_t counter = 0;

++counter;

If(counter == 61) {
// Toggle output state every 61st interrupt:
/[This means: on for ~1 second and then off for ~1 sec
PORTB ~=1;
counter = 0;

%

%

See Atmel HOWTO for example code
(t| mer_demo _Aci)ew H. Fagg: Embedded Real-

Time Systems: Interrupts

29

Example Il: Initialization
(same as before)

/I Initialize counter
counter = 0;

/I Interrupt occurs every (1024*256)/16000000 = .016384 seconds
timer0_config(TIMERO_PRE_1024);

/[Enable the timer interrupt
timerO_enable();

I/l Enable global interrupts
sei();

while(1) {
// Do something else
I3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

30

Timer 0 Example |

What Is the flash frequency?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

31

Timer 0 Example |

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 0.5 Hz

1024 * 256 * 61 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

32

Interrupts and Timers

Timing can often involve a cascade of
multiple counters:

» prescaler (1 ... 1024) (hardware)
* Timer0 (256) (hardware)

» Counter within an interrupt routine (any)
(software)

Each counter implements a frequency

d |V|S|On Andrew H. Fagg: Embedded Real- 33
Time Systems: Interrupts

Questions?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

38

Quiz

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

39

Last Time: Interrupts

* Interrupts: hardware mechanism for
temporarily stopping the main program
and executing another piece of code

 This code addresses some external or
Internal event

 Should not take too much time

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

40

Today

« Communication between the main
program and the ISR

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

41

Generating a PWM Signal In
Software
How would we do this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

42

Generating a PWM Signal In

Software
We need:

* To produce a periodic behavior, and

* A way to specify the pulse width (or the
duty cycle)

How do we implement this in code?

Andrew H. Fagg: Embedded Real- 43
Time Systems: Interrupts

Generating a PWM Signal In
Software
How do we implement this in code?

One way:

* Interrupt routine increments an 8-bit
software counter

* When the counter is O, turn the signal on

 \WWhen the counter reaches some
“duration”, turn the signal off

Andrew H. Fagg: Embedded Real- 44
Time Systems: Interrupts

Our Implementation

volatile uintl6o t duration= 42;

ISR (TIMERO OVF vect)
{

static uint8 t count = 0;
}
main () {

while (1) {

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

45

Another Implementation

volatile uint8 t duration = 0;

ISR (TIMERO OVF vect)
{

static uint8 t counter = 0;

++counter;

if (counter >= duration)
PORTB &= ~8;

else 1f (counter == 0)
PORTB |= 8;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

46

Initialization Detalls

« Set up timer
* Enable interrupts

« Set duration In some way
— In this case, we will slowly increase it

What does this implementation look like?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

a7

Initialization

int main(void) {
DDRB = 0x08;
PORTB = 0;

duration = 0;

// Interrupt configuration
timer0 config (TIMERO PRE8); // Prescaler

// Enable the timer interrupt
timer0 enable () ;

// Enable global interrupts
sei();

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

8

48

PWM Implementation

What Is the resolution (how long Is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

49

PWM Implementation

What is the resolution (how long is one increment
of “duration™)?

* The timerO counter (8 bits) expires every 256
clock cycles

8 x 256
t = = 0.128 ms

16000000

(assuming a 16MHz clock)

Andrew H. Fagg: Embedded Real- 50
Time Systems: Interrupts

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

51

PWM Implementation

What is the period of the pulse?

« The 8-bit software counter expires every 256
Interrupts

8 * 256 * 256
t = ~ 32 .77 ms
16000000
Andrew H. Fagg: Embedded Real- 52

Time Systems: Interrupts

Doing “Something Else”

unsigned int 1;

while (1) {
for(1 = 0, 1 < 256; ++1)
duration = 1;

delay ms (50) ;
I
I

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

53

NOTE: DON'T USE THIS SOFTWARE
PWM FOR YOUR PROJECT

 Use hardware PWM Instead

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

54

ISR Example Il

ISR(TIMERO_OVF _vect) {
// Toggle the LED attached to bit O of port B
PORTB "= 1;

I3

int main(void){
timerO_config(TIMERO _PRE_8);
timerO_enable();
sei();

while(1) {
// Do something else

} What is the flash frequency?

Andrew H. Fagg: Embedded Real- 55
Time Systems: Interrupts

Timer 0 Example Il

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 3.9 KHz

8 * 256 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

56

ISR Example llI:
How about this case?

ISR(TIMERO_OVF _vect) {

// Toggle the LED attached to bit O of port B

PORTB "= 1;

timerQO_set(128); // Set the timer0 counter to 128
3

int main(void){
timerO_config(TIMERO _PRE_8);
timerO_enable();
sei();

while(1) {
/I Do something else What is the flash frequency?
3

Andrew H. Fagg: Embedded Real- 57
Time Systems: Interrupts

Timer 0 Example Il

What Is the flash frequency?

16 ,000 ,000
frequency = ~ 7.8 KHz

8 *128 * 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

58

Different Timers

e Timer O
e Timer1l, 3,4,5
e Timer 2

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

59

Interrupt Service Routines

« Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
— No “printf()”

« Communication with the main program
using volatile global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

60

Interrupts, Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code In order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

61

Shared Data and Compller
Optimizations

For example:
A=A+ 1;
C =B+ A

Will result in ‘A’ being fetched from memory
once (Iinto a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

62

Shared Data and Compller
Optimizations

Now consider:

while (1) {
PORTB = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

63

Shared Data and Compller
Optimizations

The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1)
PORTB = R1;

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 64
Time Systems: Interrupts

Shared Data and Compller
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

ISR(TIMERO OVF vect) {
A = PIND;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

65

Shared Data and Compller
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

ISR(TIMERO OVF vect) {
A = PIND;
}
* The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 66
Time Systems: Interrupts

Shared Data and Compller
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This i1s accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real- 67
Time Systems: Interrupts

Shared Data and Compller
Optimizations

volatile uint8_t A,

This will cause the compiler to do this:
while (1) {

R1 = A; // Fetch value of A into reg 1
PORTB = R1;

The compiler fetches A from memory every time it needs it!

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

68

Shared Data and Interrupts

* Recall: the data bus on the mega2560 is 8
bits wide

* A byte can be transferred in one cycle

* Any data structure larger than a byte
requires multiple transfers

When there are interrupts: this can lead to
subtle (but very real) problems

Andrew H. Fagg: Embedded Real- 69
Time Systems: Interrupts

For example:
uintlo t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

70

For example:
uintlo t a;
a = a + 5;
Steps:

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 71
Time Systems: Interrupts

Suppose that an ISR routine views and then
modifies the variable a ...

Andrew H. Fagg: Embedded Real- 72
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 73
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* ISR changes a, but main program still
uses old value

Andrew H. Fagg: Embedded Real- 74
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 75
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* The ISR "sees” the new value of the low
byte and the old value of the high byte

Andrew H. Fagg: Embedded Real- 76
Time Systems: Interrupts

Solution?

One possibllity:

* If the main program is working with a, then
It can temporarily disable interrupts while it
does this operation

* Note: it should not disable interrupts for
very long

Andrew H. Fagg: Embedded Real- 77
Time Systems: Interrupts

Turning off Interrupts

uintlo t a;

cli;

a + 5;

o)
I

sei;

// Turn off interrupts

// Turn them back on

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

78

Shared Data Problems

* Any time that the main program and the
ISR both view/change a global variable,
the potential exists for these shared data
problems

» Always a problem if the variable is larger
than a single byte

« Some single byte variables are a problem,

but not all are (it depends on how they are
used)

Andrew H. Fagg: Embedded Real- 79
Time Systems: Interrupts

Turning off Interrupts

 Always turn off for the shortest time
possible

* There are some cases in which interrupts
do not need to be turned off for things to
work properly

— E.qg., our “flag” in project 5

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

80

