Microprocessors

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Questions?

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Quiz

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Connecting Assembly Language to C

* Our C compller is responsible for
translating our code into Assembly
Language

* Today, we rarely program in Assembly
Language
— Embedded systems are a common exception

— Also: it Is useful in some cases to view the
assembly code generated by the compiler

Andrew H. Fagg: Embedded Real- 4
Time Systems: Microprocessors

An Example

A C code snippet:

if(B <A){
D +=A;

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

An Example

The Assembly :

A C code snippet: LDS R1 (A)
LDS R2 (B)

(B < A){ CP R2, R1

D +=A; BRGE 3

} LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A) <« PC
LDS R2 (B)
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location A into register 1 STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B) <+— PC
(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
ADD R3, R1
Load the contents of memory
location B into register 2 STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B <A) { CPR2, Rl <« PC
D += A BRGE 3
} LDS R3 (D)
Compare the contents of register ADD R3, R1
2 with those of register 1 STS (D), R3
This results in a changetothe
status register ime Systeme. Microprocescore. 9

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE3 < PC
} /LDS R3 (D)
ADD R3, R1

Branch If Greater Than or Equal To:
jump ahead 3 instructions if true STS (D), R3

Andrew H. Fagg: Embedded Real- 10
Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)

LDS R2 (B)
if(B < A) { CP R2,R1

D+=A;

BRGE 3
} / LDS R3 (D)
ADD R3, R1

Branch if greater than or equal to
will jump ahead 3 instructions if 919 (D), R3

rue.— <+ PC

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

If true

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A) { CP R2, R1
D += A; | BRGE 3
} If not true | DS R3 (D) <« PC
Not true: execute the next ADDR3, R1
Instruction STS (D), R3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
(B <A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D) <+— PC
/ ADD R3, R1
Load the contents of memory
location D into register 3 STS (D), R3

Andrew H. Fagg: Embedded Real- 13
Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
If(B < A){ CP R2, R1
D +=A; BRGE 3
} LDS R3 (D)
Adc_l the values in «—ADD R3, R1 «— PC
store the reaultin STS (D), R3
register3

Time Systems: Microprocessors

An Example

The Assembly :
A C code snippet: LDS R1 (A)
LDS R2 (B)
if(B < A) { CP R2, R1
D +=A:; BRGE 3
} LDS R3 (D)
Store the value in register ADD R3, R1

3 back to memory
location D

———STS(D),R3 + PC

Andrew H. Fagg: Embedded Real- 15
Time Systems: Microprocessors

Take-Aways

Instructions are the “atomic” actions that are taken
by the processor

« Many different component work together to
execute a single instruction

* One line of C code typically translates into a
sequence of several instructions

* In the mega 2560, most instructions are
executed in a single clock cycle

The high-level view is important here: you won't be
compiling programs on exams

Andrew H. Fagg: Embedded Real- 16
Time Systems: Microprocessors

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

17

Components of a Microprocessor

What are they?

Andrew H. Fagg: Embedded Real- 18
Time Systems: Microprocessors

Components of a Microprocessor

« Memory:
— Storage of data
— Storage of a program

— Either can be temporary or “permanent”
storage

* Registers: small, fast memories

— General purpose: temporarily store arbitrary
data

— Special purpose: used to control the
processor

Andrew H. Fagg: Embedded Real- 19
Time Systems: Microprocessors

Components of a Microprocessor

e |nstruction decoder:

— Translates current program instruction into a
set of control signals

 Arithmetic logical unit:

— Performs both arithmetic and logical
operations on data: add, subtract, multiply,
AND, OR ...

* Input/output control modules

Andrew H. Fagg: Embedded Real- 20
Time Systems: Microprocessors

Components of a Microprocessor

* Many of these components must
exchange data with one-another

e Iltis common to use a ‘bus’ for this
exchange

Andrew H. Fagg: Embedded Real- 21
Time Systems: Microprocessors

Buses

* In the simplest form, a bus Is a single wire
* Many different components can be
attached to the bus

* Any component can take input from the
bus or place information on the bus

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

22

Buses

* At most one component may write to the
bus at any one time

* In a microprocessor, which component Is
allowed to write Is usually determined by
the code that is currently executing

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

23

Collections of Bits

A data bus typically captures a set of bits
simultaneously

Need one wire for each of these bits

In the Atmel Mega2560: the data bus Is 8-
bits “wide”

In your laptops: 32 or 64 bits

Andrew H. Fagg: Embedded Real- 25
Time Systems: Microprocessors

Atmel I\/Iega2560 Architecture

Data Bus 8-bit

Program Status
Flash - 8 o
Program Counter and Control
Memory Lt
l Interrupt
- 32x8 i — Unit
Instruction General
Register Purpose - SPI
— Registrers o Unit
¥
Instruction Watchdog
Decoder - =" Timer
o c
£ ®»
A @ ATl
A o S L nalog
Control Lines g 2 Comparator
= B
&) (0]
(0] —
) ©
o = 1 /O Module1

Data /O M le 2
» SRAM le—pft—» /O Module

—» /O Module n

EEPROM —

1/0 Lines o —

Andrew H. Fagg: Embedded Real- 26
Time Systems: Microcontrollers

Atmel Mega2560

8-bit data bu

* Primary
mechanism
for data
exchange

Data Bus 8-bit

Program Status
Flash - -
Program Counter and Control
Memory Lt
l Interrupt
. > 32x8 Unit
Instruction General
Register Purpose SPI
— Registrers Unit
A
Instruction Watchdog
Decoder - Timer
()] c
£ k%)
7] ()
 / o = Analog
Control Lines B 2 Comparator
= 5
© @
(] =
= ©
Q £ i/O Module1
i/O Module 2
i/O Module n
EEPROM
I/O Lines
Andrew H. Fagg: Embedded Real- 27

Time Systems: Microcontrollers

Memory

What are the essential components of a
memory?

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

28

A Memory Abstraction

* We think of memory as an array of
elements — each with 1ts own address
« Each element contains a value

— It Is most common for the values to be 8-bits
wide (so a byte)

0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B

o 1 2 3 M_

Andrew H. Fagg: Embedded Real- 29
Time Systems: Microprocessors

A Memory Abstraction

* We think of memory as an array of
elements — each with 1ts own address

« Each element contains a value

— It Is most common for the values to be 8-bits
wide (so a byte)

Stored value

£\
0x32 | OxF1 | Ox11 | Ox67 | ... 0x7B
0 1 2 3 M_;
K Andrew H. Fagg: Embedded Real- 30

Address Time Systems: Microprocessors

Memory Operations

Read
foo (A+D);

reads the value from the memory location
referenced by the variable ‘A" and adds
the value to 5. The result Is passed to a
function called foo () ;

Andrew H. Fagg: Embedded Real- 31
Time Systems: Microprocessors

Memory Operations

writes the value 5 into the memory location
referenced by ‘A’

Andrew H. Fagg: Embedded Real- 32
Time Systems: Microprocessors

Types of Memory

Random Access Memory (RAM)

« Computer can change state of this
memory at any time

* Once power Is lost, we lose the contents
of the memory

* This will be our data storage on our
microcontrollers

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

34

Types of Memory

Read Only Memory (ROM)

« Computer cannot arbitrarily change state
of this memory

 When power Is lost, the contents are
maintained

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

35

Types of Memory

Erasable/Programmable ROM (EPROM)

« State can be changed under very specific
conditions (usually not when connected to
a computer)

» Our microcontrollers have an Electrically
Erasable/Programmable ROM (EEPROM)
for program storage

— Also called Flash Memory

Andrew H. Fagg: Embedded Real- 36
Time Systems: Microprocessors

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

37

Atmel I\/Iega2560 Architecture

Data Bus 8-bit

Program Status
Flash - 8 o
Program Counter and Control
Memory Lt
l Interrupt
- 32x8 i — Unit
Instruction General
Register Purpose - SPI
— Registrers o Unit
¥
Instruction Watchdog
Decoder - =" Timer
o c
£ ®»
A @ ATl
A o S L nalog
Control Lines g 2 Comparator
= B
&) (0]
(0] —
) ©
o = 1 /O Module1

Data /O M le 2
» SRAM le—pft—» /O Module

—» /O Module n

EEPROM —

1/0 Lines o —

Andrew H. Fagg: Embedded Real- 38
Time Systems: Microcontrollers

Atmel Mega2560
€

32 general
purpose
registers

* 8 bits wide
e 3 pairs of

registers can
be combined
to give us 16
bit registers

Data Bus 8-bit

Program
Counter

Control Lines

General

i

Interrupt
Unit

:

SPI
Unit

Watchdog
Timer

Analog
Comparator

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

i/O Modulet

i/O Module 2

i/O Module n

Purpose
Registrers
()]
()] c
£ @
7] ()
] (0]
o 5
gl 2
- [&]
o o
(] =
= ©
() £
Data
—¥ SRAM
EEPROM
I/O Lines

39

Atmel Mega2560
€

Special
purpose
registers

e Control of the '

Internals of
the
processor

Data Bus 8-bit

Program Status

Counter and Control
> 32x8
Instruction General
Register Purpose
44— Registrers
Instruction
Decoder -
o c
£ ®»
] w
] [0
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

—¥ SRAM =

EEPROM —

1/0 Lines o —

Interrupt
el Unit
e
o
(> Co/r\::ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

40

Atmel Mega2560
€

Random Access
Memory (RAM)

« 8 KByte In size

Data Bus 8-bit

Program Status
ngfgm t Counter * and Control
Memory Lt

l > 32x8
Instruction General
Register Purpose
— Registrers
¥

ruction
De

Control Lines

Djg€ct Addressing

Indirect Addressing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

1/0 Lines o —

Interrupt
Unit

:

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

41

Atmel Mega2560
€

Random Access
Memory (RAM)

« 8 KByte In size

Note: in high-end
Processors,
RAM is a
separate
component

Data Bus 8-bit

:

Program

Status

3

ruction

De

Control Lines

Djg€ct Addressing

Indirect Addressing

Flash 8 o
Program Counter and Control
Memory

l 32x8
Instruction General
Register Purpose -
— Registrers

i

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

E

1/0 Lines

i/O Modulet

i/O Module 2

i/O Module n

42

Data Bus 8-bit

Atmel Mega2560
€

Flash (EEPROM)
» Program —
storage

« 256 KByte In
size

Program Status
Flash -
Program Counter and Control
Memory
32x8
Instruction General
Register Purpose
— Registrers
¥
Instruction
Decoder -
()] c
£ ®»
2 8
Control Lines 3 2
< -
—— (&}
o o
(] =
= ©
() £
Data

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

—¥ SRAM

EEPROM

1/0 Lines

Interrupt

Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

43

Atmel Mega2560
€

Flash (EEPROM)

* In this and many
microcontrollers,
program and
data storage Is
separate

 Not the case In
our general
purpose
computers

Data Bus 8-bit
Program Status
Flash 8 o
Program Counter and Control
Memory
Interrupt
- 32x8 i — Unit
Instru General |
Regi Purpose - SPI
44— Registrers ! Unit
¥
Instruct l Watchdog
Decod o =" Timer
] w
7] o ALU
. o) = — CoAnalogt
Control Lines = 2 mparator
= B
&) (0]
(0] —
) ©
e £ *—» /0 Modulet
Data bt /0 Module 2
—¥ SRAM : .
—» /O Module n
EEPROM r—ie
1/0 Lines o —
44

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Atmel Mega2560
€

EEPROM

 Permanent
data storage

Data Bus 8-bit

Flash
Program
Memory

e

Program
Counter

and Control

Status

;

Instruction
Register

3

Instruction
Decoder

Direct Addressing

Indirect Addressing

32x8
General
Purpose
Registrers

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

Data

SRAM =

EEPROM

1/0 Lines

Interrupt
el Unit
e
oo Vs
(> Co/r\::ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

45

Data Bus 8-bit

Atmel Mega2560
<

Arithmetic o B
Log|CaI Unlt l . HH lntg:;pt
 Data Iinputs R

Watchdog
Timer

egistre
nstruction
. ecoder
from registers i "
@ 2 —p Analog
Control Lines Comparator

« Control inputs

Direct Add
Indirect Add

| /O Module1

not shown

I

(derlved from S%"j{?w e—pde—»| /0 Module 2

INnstruction e o] vonamen

decoder) "

1/0 Lines i

Andrew H. Fagg: Embedded Real- 46
Time Systems: Microcontrollers

Machine-Level Programs

Machine-level programs are stored as
seguences of atomic machine instructions

« Stored In program memory

« Execution Is generally sequential
(Instructions are executed in order)

* But — with occasional “jumps” to other
locations iIn memory

Andrew H. Fagg: Embedded Real- 48
Time Systems: Microcontrollers

Types of Instructions

Memory operations: transfer data values
between memory and the internal registers

Mathematical operations: ADD,
SUBTRACT, MULT, AND, etc.

Tests: value == 0, value > 0, etc.

Program flow: jump to a new location,
jump conditionally (e.qg., If the last test was
true)

Andrew H. Fagg: Embedded Real- 49
Time Systems: Microcontrollers

Mega2560: Decodlng Instructions

Program
counter

« Address of
currently
executing
Instruction

Data Bus 8-bit

Program Status
Pflash Counter and Control
emory
32x8
Instruction General
Register Purpose
— Registrers
¥
Instruction
Decoder -
o c
£ ®»
7 8
Control Lines 3 2
< -
—— (&}
&) (0]
(0] —
) ©
() £
Data

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

—¥ SRAM :

EEPROM —

1/0 Lines o —

Interrupt
[Unit
e
oo Vs
(> Co/r\r?p?ell?gtor
> /O Module1
—» /O Module 2
—p /O Module n

50

Mega2560: Decoding Instructions

<

Instruction
register =™

e Stores the
machine-level
Instruction
currently being
executed

Data Bus 8-bit

:

Flash
Program
Memory

Ll

e

Instruction
Register

Instruction
Decoder

'

Control Lines

Program Status
Counter & and Control
32x8
General
Purpose -
Registrers
()]
2 = N
2 o ALU
o o
3| &
- [&]
o o
(] =
= ©
() £
Data
—¥ SRAM =4

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt

[Unit
e
oo Vs
(> Coﬁr?p?e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

ol

Data Bus 8-bit

Atmel Mega2560
<«

Instruction By Lo) Lo
decoder B Bl s
- Translates | =
current ~— v
Instruction into
control signals o |

for the rest of
the processor

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM s

1/0 Lines o —

Interrupt
el Unit
G
i
il Co/r\r?p?ell?gtor
® /O Module1
—» /O Module 2
—p /O Module n

52

Atmel Instructions

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

53

Some Mega2560 Memory Operations

We refer to this as

LDS Rd, k4/ “Assembly Language”

 Load SRAM memory location k into
register Rd

* Rd <- (K)

STS Rd, k
e Store value of Rd into SRAM location k
« (k) <-Rd

Andrew H. Fagg: Embedded Real- 54
Time Systems: Microcontrollers

Load SRAM Value to Register

LDS Rd, k

<

Data Bus 8-bit

:

Program Status
Flash - < o
Program Counter and Control
Memory Lt
l 32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder -
o c
£ ®»
2 8
v) S
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
—® SRAM

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

55

Store Reglster Value to SRAM

STS Rd, K

Data Bus 8-bit

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l 32x8
Instruction General
Register Purpose
Registrers
¥
Instruction
Decoder -
o c
£ ®»
2 8
v) S
Control Lines 3 2
< -
- (&}
&) (0]
(0] —
) ©
() £
—® SRAM

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
Unit

SPI
Unit

Watchdog
Timer

Analog
Comparator

i/O Modulet

i/O Module 2

i/O Module n

56

Some Mega2560 Arithmetic and

Logical Instructions
ADD Rd, Rr
« Add Rd and Rr (these are registers)
* Operation: Rd <- Rd + Rr

ADC Rd, Rr
« Add with carry
* Rd<-Rd+Rr+C

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

58

Add Two Register Values

ADD Rd, Rr

* Fetch register
values

Data Bus 8-bit

<

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l > 32x8
Instruction General
Register Purpose
[— j Registrers
, | I
Instruction
Decoder -
o c
£ ®»
A @
v) S
Control Lines 3 2
= B
&) (0]
(0] —
) ©
() £
Data
—® SRAM
EEPROM
1/0 Lines

Andrew H. Fagg: Embedded Real-
Time Systems: Microcontrollers

Interrupt
el Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

59

Add Two Register Values

Data Bus 8-bit

<

ADD Rd, Rr

* Fetch register
values

* ALU performs
ADD

:

Program Status
Flash - -
Program Counter and Control
Memory Lt
l > 32x8
Instruction General
Register Purpose
[— j Registrers
, -
Instruction
Decoder -
o)} c
£ k%)
2 8
Control Lines 3 2
< s
- [&]
o o
(o) o=
= ©
o £
Data
—® SRAM

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

EEPROM —

1/0 Lines o —

Interrupt
el Unit
e
oo Vs
(> Co/r\r?:e‘l?gtor
> /O Module1
—» /O Module 2
—p /O Module n

60

Add Two Reglster Values

Data Bus 8-bit

Program Status

Flash - 8 ro—p
A D D R d R r Program Counter and Control
Memory g
)
l Interrupt
- 32x8 i — Unit

SPI

* Fetch register i

44— j Registrers Unit
, I I

values
Decoder - Timer

o c

£ ®»

] w
 ALU performs ' 1.
Control Lines = 2 Comparator

= B

&) (0]

(0] —

) ©

() £

ADD

*—» /0 Module1

¢ ReSUIt iS I—. S[}):{a:?v] le—pit—» /O Module 2

written back to e o] o

register via the —— |
data bus \/

Andrew H. Fagg: Embedded Real- 61
Time Systems: Microcontrollers

Some Mega2560 Arithmetic and

Logical Instructions

NEG Rd: take the two’s complement of Rd

AN
AN
EO

D Rd, Rr: bit-wise AND with a register
DI Rd, K: bit-wise AND with a constant

R Rd, Rr: bit-wise XOR

INC Rd: Increment Rd
MUL Rd, Rr: multiply Rd and Rr (unsigned)
MULS Rd, Rr: multiply (signed)

Andrew H. Fagg: Embedded Real- 62
Time Systems: Microcontrollers

An Example

#include "oulib.h"

volatile uint8 t a = 10;

int main (void)

{

a = at+b;

while (1)
delay ms (++a);
b7

} Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

66

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00
Ox15c ;
=22

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

251

255

0

Ox15c <delay ms>

0x146 <main+0xa>

67

0000013¢c <main>:

volatile uint8 t a = 10;

Location in program

int main (void)

i memory

a = atb;

13c: 80 91 00 02 1ds r24, 0x0200

140: 8b 5f subi r24, OxFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while (1) {

delay ms (++a);

146: 80 91 00 02 1ds r24, 0x0200

l4a: 8f 5f subi r24, OxFF ; 255

l4c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 1ds r24, 0x0200

154: 90 e0 1di r25, 0x00 ;0

156: Oe 94 ae 00 call Ox15c ; O0x15c <delay ms>
15a: f5 cf rjmp =22 ; 0x146 <main+Oxa>

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

68

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

l4a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

Load memory

location 0x200 to r24

r24, 0x0200 4
r24, OxFB ; 251
0x0200, r24

r24, 0x0200
r24, OxFF ; 255
0x0200, r24
r24, 0x0200

r25, 0x00 ;0
O0x15c ; 0x15c <delay ms>
=22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

69

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

Add 5to r24
rz24,

OXOZOO/
r24, 0OxFB ; 251

0x0200, r24

r24, 0x0200

r24, OxFF ; 255

0x0200, r24

r24, 0x0200

r25, 0x00 ;7 0

O0x15c ; 0x15c <delay ms>

=22 ; 0x146 <main+Oxa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

70

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

Compiled Result

lds r24, 0x0200

subi r24, OxFB ; 251

sts 0x0200, r24 < Store r24 to memory
location 0x200

lds r24, 0x0200

subi r24, OxFF ; 255

sts 0x0200, r24

lds r24, 0x0200

1di r25, 0x00 ;0

call Ox15c ; 0x15c <delay ms>

rjmp =22 ; 0x146 <maintOxa>

Andrew H. Fagg: Embedded Real- 71

Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
14a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00
Ox15c ;
=22

251

Load memory
location 0x200 to r24

Ox15c <delay ms>

0x146 <main+0xa>

72

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

10;

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Compiled Result

r24, 0x0200
r24, 0OxFB ; 251
0x0200, r24

Add 1tor24
r24, 0x0200
r24, OxFF 4/255
0x0200, r24
r24, 0x0200
r25, 0x00 ;7 0
O0x15c ; 0x15c <delay ms>
=22 ; 0x146 <main+Oxa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

73

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

l4a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

Compiled Result

lds r24, 0x0200

subi r24, 0OxFB ; 251

sts 0x0200, rz24

lds r24, 0x0200

subi r24, OxFF ; 255

sts 0x0200, r24 Q=

lds 124, 0x0200 — Store r24 to memory
1di £25. 0x00 0 location 0x200
call Ox15c ; 0x15c <delay ms>

rjmp =22 ; 0x146 <maintOxa>
Andrew H. Fagg: Embedded Real- 74

Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

Compiled Result

lds r24, 0x0200
subi r24, OxFB ; 251
sts 0x0200, r24
Load memory
1ds r24, 0x0200 location 0x200 to
subi r24, OxFF ; 255 r25,r24
sts 0x0200, r24
lds r24, 0x0200 %
1di r25, 0x00 ;0
call Ox15c ; 0x15c <delay ms>
rjmp =22 ; 0x146 <maintOxa>
Andrew H. Fagg: Embedded Real- 75

Time Systems: Microprocessors

0000013¢c <main>:

volatile uint8 t a =

int main (void)

{

a = atb;

13c: 80 91 00 02

140: 8b 5f

142: 80 93 00 02

while (1) {
delay ms (++a);

146: 80 91 00 02

l4a: 8f 5f

l4c: 80 93 00 02

150: 80 91 00 02

154: 90 0

156: Oe 94 ae 00

15a: f5 cf

Compiled Result

lds r24, 0x0200

subi r24, 0OxFB

sts 0x0200, rz24

lds r24, 0x0200

subi r24, OxFF

sts 0x0200, rz24

lds r24, 0x0200

1di r25, 0x00

call Ox15c ; 0x15c <delay ms>
rjmp =22

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Call delay_ms()

0x146 <main+0xa>

76

0000013¢c <main>:

volatile uint8 t a

int main (void)

{
a at+5;

13c: 80 91 00 02
140: 8b 5f

142: 80 93 00 02
while (1) {

delay ms (++a);

146: 80 91 00 02
l4a: 8f 5f

l4c: 80 93 00 02
150: 80 91 00 02
154: 90 e0

156: Oe 94 ae 00
15a: f5 cf

lds
subi

sts

lds
subi
sts
lds
1di
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r24, 0OxFB
0x0200, r24

r24, 0x0200
r24, OxFF
0x0200, r24
r24, 0x0200
r25, 0x00

251

255

0

O0x15c ; 0x15c <delay ms>

22 g

0x146 <main+0xa>

—

Go back to top of
while() loop 77

Example Il

#include "oulib.h"
volatile uintleo t a = 10;

int main (void)

{
a = atd;
while (1) {
delay ms (++a);
b7
} Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

78

Example Il

#include "oulib.h"
volatile uintleo t a = 10;

int main (void)

{ Size of
a = at5; Integer has
changed!
while (1) ({
delay ms (++a) ; We need
i two bytes
} Andrew H. Fagg: Embedded Real- 79

Time Systems: Microprocessors

0000013¢c <main>:

volatile uintl6 t a = 10;

int main (void)

{
a = atb;

13c: 80 91
140: 90 91
144: 05 96
146: 90 93
l4a: 80 93
while (1) {

delay ms (++a);

l4e: 80 91
152: 90 91
156: 01 96
158: 90 93
15c: 80 93
160: 80 91
164: 90 91
168: Oe 94
léc: fO0 cf

00
01

01
00

00
01

01
00
00
01
b7

02
02

02
02

02
02

02
02
02
02
00

lds
lds
adiw
sts

sts

lds
lds
adiw
sts
sts
lds
lds
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r25, 0x0201
r24, 0x05

0x0201, r25
0x0200, r24

r24, 0x0200
r25, 0x0201
r24, 0x01

0x0201, xr25
0x0200, r24
r24, 0x0200
r25, 0x0201

Oxloe ; 0xlo6e <delay ms>
Oxl4e <main+0x12>

.—32

80

0000013¢c <main>:

volatile uintl6 t a = 10;

int main (void)

{
a = atb;

13c: 80 91 00 02
140: 90 91 01 02
144: 05 96

146: 90 93 01 02
l4a: 80 93 00 02
while (1) {

delay ms (++a);

lde: 80 91 00 02
152: 90 91 01 02
156: 01 96

158: 90 93 01 02
15c: 80 93 00 02
160: 80 91 00 02
164: 90 91 01 02
168: Oe 94 b7 00
l6c: fO0 cf

Compiled Result

Load memory locations
0x201, 0x200

1ds r24, 0x0200

1ds r25, 0x0201 ¢ to r2s, r24
adiw r24, 0x05 ;5

sts 0x0201, r25

sts 0x0200, r24

lds r24, 0x0200

1ds r25, 0x0201

adiw r24, 0x01 ;1

sts 0x0201, xr25

sts 0x0200, r24

1lds r24, 0x0200

1ds r25, 0x0201

call Ox1lee ; 0xlo6e <delay ms>

rjmp =32 ; Ox1l4e <maint0x12>
Andrew H. Fagg: Embedded Real- 81

Time Systems: Microprocessors

0000013¢c <main>:

volatile uintl6 t a = 10;

int main (void)

{
a = atb;

13c: 80 91
140: 90 91
144: 05 96
146: 90 93
l4a: 80 93
while (1) {

delay ms (++a);

l4e: 80 91
152: 90 91
156: 01 96
158: 90 93
15c: 80 93
160: 80 91
164: 90 91
168: Oe 94
léc: fO0 cf

00
01

01
00

00
01

01
00
00
01
b7

02
02

02
02

02
02

02
02
02
02
00

lds
lds
adiw
sts

sts

lds
lds
adiw
sts
sts
lds
lds
call

rjmp

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

Compiled Result

r24, 0x0200
r25, 0x020
r24, 0x05
0x0201, r25
0x0200, r24

r24, 0x0200
r25, 0x0201
r24, 0x01

0x0201, xr25
0x0200, r24
r24, 0x0200
r25, 0x0201

Add 5to r25, r24

Oxloe ; 0xlo6e <delay ms>

.—32

Oxld4de <main+0x12>

82

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atd;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ;5

146: 90 93 01 02 sts 0x0201, r25

l4a: 80 93 00 02 sts 0x0200, r24 Store r25, I’24.t0

memory locations

hile(l) | 0x201, 0x200
delay ms (++a);

l4e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ;1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>

lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 83
Time Systems: Microprocessors

0000013c <main>:
volatile uintl6 t a = 10;

Compiled Result

{

a = atb;
13c: 80 91 00 02 lds r24, 0x0200
140: 90 91 01 02 lds r25, 0x0201
144: 05 96 adiw r24, 0x05 ;5
146: 90 93 01 02 sts 0x0201, r25
l4a: 80 93 00 02 sts 0x0200, r24 Store 25, I’24.t0
memory locations
hile(l) | 0x201, 0x200
delay ms{++a); We have doubled
lde: 80 91 00 02 lds r24, 0x0200
152: 90 91 01 02 1ds r25, 0x0201 the number of
156: 01 96 adiw r24, 0x01 ;1 memory
158: 90 93 01 02 sts 0x0201, r25 .
15c: 80 93 00 02 sts 0x0200, r24 OperatlonS!
160: 80 91 00 02 lds r24, 0x0200
164: 90 91 01 02 lds r25, 0x0201
168: Oe 94 b7 00 call Oxloe ; Oxloe <delay ms>
lé6c: f0 cf rjmp .—32 ; O0xl4e <main+0x12>

Andrew H. Fagg: Embedded Real- 84
Time Systems: Microprocessors

Take-Home Message |

We want to carefully choose our data types
« Smaller variables are handled more
efficiently

 But: we need to make sure that the results
of the math that we do with these variables
fits In the size that we have chosen

— Intermediate values must fit, too!

Andrew H. Fagg: Embedded Real- 85
Time Systems: Microprocessors

Take-Home Message ||

* Aline a C code usually translates into a
seguence of atomic instructions

 Most Instructions are executed In one
cycle of the system clock

* For a given instruction, many different

components work together to make that
Instruction happen

— Program counter, instruction register and
decoder, general and special purpose
registers, memory, ALU, etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

86

Take-Home Message |l

* You should know what these different

components are and what they do at an
abstract level

* You don't need to know the details of the
assembly language or how these detalils
relate to specific lines of C code

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

87

* Project 8

Next Time

Andrew H. Fagg: Embedded Real-
Time Systems: Microprocessors

88

