Serial Communication

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Questions?

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Input/Output Systems

Processor needs to communicate with other
devices:

* Recelve signals from sensors
« Send commands to actuators

* Or both (e.qg., disks, audio, video devices,
other processors)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

An Example:
SICK Laser Range Finder

Laser Is scanned
horizontally

Using phase information,
can Iinfer the distance to the
nearest obstacle

Resolution: ~.5 degrees, 1
cm

Can handle full 180 degrees
at 20 Hz

Andrew H. Fagg: Embedded Real- 4
Time Systems: Serial Comm

Serial Communication

 Communicate a set of bytes using a single
signal line

* We do this by sending one bit at a time:

— The value of the first bit determines the state
of a signal line for a specified period of time

— Then, the value of the 2" bit is used
— Etc.

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

Serial Communication

The sender and receiver must have some
way of agreeing on when a specific bit Is
being sent

e Some cases: the sender will also send a
clock signal (on a separate line)

 Other cases: each side has a clock to tell it
when to write/read a bit

— The sender/receiver must first synchronize
their clocks before transfer begins

Andrew H. Fagg: Embedded Real- 8
Time Systems: Serial Comm

Asynchronous Serial
Communication

* The sender and receiver have their own
clocks, which they do not share

* This reduces the number of signal lines

But: we still need some way to agree that
data is valid. How?

Andrew H. Fagg: Embedded Real- 10
Time Systems: Serial Comm

Asynchronous Serial

Communication

How can the two sides agree that the data Is
valid?

* Must both be operating at essentially the
same transmit/receive frequency

» A data byte Is prefaced with a bit of
iInformation that tells the receliver that bits
are coming

 The recelver uses the arrival time of this
start bit to synchronize its clock

Andrew H. Fagg: Embedded Real- 11
Time Systems: Serial Comm

A Typical Data Frame
01234567

start stop
hit bits

The start bit indicates that a byte Is coming

12

A Typical Data Frame
01234567

start stop
bit bits

The stop bits allow the receiver to
immediately check whether this is a valid
frame

* If not, the byte Is thrown away 13

Data Frame Handling

Most of the time, we do not deal with the
data frame level. Instead, we rely on:

* Hardware solutions: Universal
Asynchronous Recelver Transmitter
(UART)

—Very common in computing devices
» Software solutions In libraries

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

14

One (Old) Standard: RS232-C

Defines a logic encoding standard:

* “High” is encoded with a voltage of -5 to -15
(-12 to -13V is typical)

* “Low” is encoded with a voltage of 5 to 15
(12 to 13V is typical)

Andrew H. Fagg: Embedded Real- 15
Time Systems: Serial Comm

RS232 on the Mega2560

Our mega 2560 has FOUR Universal,
Asynchronous serial
Receiver/Transmitters (UARTS):

« Each handles all of the bit-level
manipulation
— Software only worries about the byte level

* Uses OV and 5V to encode “lows” and
“highS”
— Must convert if talking to a true RS232C
device (+/- 13V)

Andrew H. Fagg: Embedded Real- 16
Time Systems: Serial Comm

Mega2560 UART C Interface

Lib C support (standard C):
char fgetc (fp) : receive a character from a port

fputc ("a’, fp) : puta character out to the port
fputs (”“foobar”, f£fp) : puta string out to the port

fprintf (fp, "“foobar %sd %s”, 45, "baz”):
put a formatted string out to the port

Andrew H. Fagg: Embedded Real- 17
Time Systems: Serial Comm

Mega2560 UART C Interface

OUlib support:
fp = serial init buffered(l, 38400, 40, 40)

Initialize port one for a transmission rate of 38400 bits per
second (input and output buffers are both 40 characters

long)
Note: declare fp as a global variable:

FILE *fp;

serial buffered input waiting (fp)
|s there a character in the buffer?

See the Atmel HOWTO: examples_2560/serial

Andrew H. Fagg: Embedded Real- 18
Time Systems: Serial Comm

Reading a Byte from the Serial Port

int c;
c=fgetc (fp)

Note: fgetc() “blocks™ until a byte is available

* Will only return with a value once a
character Is available to be returned

Andrew H. Fagg: Embedded Real- 19
Time Systems: Serial Comm

Processing Serial Input
int c;
while (1) {
1f (serial buffered input waiting(fp))
// A character is available for reading
c = fgetc(fp):
<do something with the character>

}

<do something else while waiting>

J

serial_buffered input_waiting(fp) tells us whether a byte
is ready to be read

Andrew H. Fagg: Embedded Real- 20
Time Systems: Serial Comm

Mega2560 UART C Interface

Also avallable:
« fscanf () : formatted input

See the LIbC documentation or the AVR C
textbook

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

21

Character Representation

* A “char’ is just an 8-bit number

* This allows us to perform meaningful
mathematical operations on the characters

Andrew H. Fagg: Embedded Real- 22
Time Systems: Serial Comm

Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 (100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42 2A K 100 1010 74 4A] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E n
010 1111 47 2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78 x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58 3A 3 1011010 90 |SA Z 1111010 122 | 7A z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F

Buffers

A buffer Is an array that temporarily stores
data in sequential order

fp = serial init buffered(l, 38400, 40, 40)

* Declares both the input and output buffer
sizes to be 40 bytes

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

24

Output Buffer

* Any characters that are produced (e.g.,

with fputc() or fprintf()) are first placed In
the output buffer

 Then, the serial hardware removes one
byte at a time to send it

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

25

Output Buffer

» Advantage: fputc() and fprintf() don’'t have
to walit for the bytes to be transmitted
— Your program can keep doing the rest of its
job
« But: If the buffer fills up, these functions
will block until there Is space

— You must choose your buffer size somewhat
carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

26

Input Buffer

Temporary storage of bytes as they are
received

* Your program can read these bytes at its
leisure

« With OULIB: If the buffer fills up, then
additional bytes will be lost

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

27

Physical Interface

Four matched pairs of transmit and receive
pins (TX? and RX?)

MADE IN Q
ITALY

vvvvvvvv

(" é
.......... 4 &)Y

:: 22

(3
%;'r’- -
ICSP
® & U

ou NS
u Arduino MEGA

- -~ ™ ~ o N N N

wuu,.arduino.cc

POLIER ,—ﬂNﬂLOG IN it

AN '
ﬂ GNDUIN ® v N ¢ s i el g oo BRG

AAAAAAAA

Andrew H. Fagg: Embedded Real- 28
Time Systems: Serial Comm

Physical Interface

Port O Is also connected to the USB port

MADE IN O
ITALY

unuun“d

1w
“»
o\
P
€3
3
k
:
y
6l
2
L

DIGITAL

® & " LuBBEG
LRI)

Arduino MEGA

wuu.arduino.cc

See “realterm” on downloads page °*"

Serial Challenge

* Suppose that we know that we will be
receiving a sequence of 3 decimal digits
from the serial port

 How do we translate these digits into an
Integer representation?

« Bonus: what if we don't know how many
digits are coming? (we read digits until a
non-digit Is read)

Andrew H. Fagg: Embedded Real-
Time Systems: Serial Comm

51

Binary Dec Hex Glyph Binary Dec Hex Glyph Binary Dec Hex Glyph

010 0000 32 | 20 sP 100 0000| 64 40 @ 110 0000| 96 & 60
010 0001 33 | 21 ! 100 0001 65 41 A 1100001 97 61 a
010 0010 34 | 22 ! 100 0010 66 | 42 B 1100010 98 | 62 b
0100011 35 23 # 100 0011| 67 | 43 C 110 0011 99 | 63 d
0100100 36 | 24 § 100 0100 68 | 44 D 110 0100100 64 d
0100101 37 25 % 100 0101| 69 45 E 1100101101 65 e
C h a r aCte r 0100110 38 | 26 & 1000110 70 | 46 F 110 0110 102 | 66 f
010 0111 39 27 : 1000111 71 | 47 G 1100111103 67 g

- 010 1000 40 @ 28 (100 1000 72 | 48 H 110 1000|104 68
R e p re S e n tat I O n - 010 1001 41 | 29) 100 1001 73 | 49 I 110 1001|105 | 69 i
. 7010 1010 42 2A K 100 1010 74 4A] 110 1010 106 | 6A i
0101011 43 2B+ 1001011 75 4B K 110 1011|107 6B k
AS C I I 010 1100 44 2C ; 100 1100| 76 | 4C L 110 1100|108 6C |
0101101 45 2D - 1001101 77 | 4D M 1101101109 6D m
7010 1110 46 2E 7 1001110 78 | 4E N 1101110 110 6E n
010 1111 47 2F / 100 1111 79 | 4F | o) 110 1111|111 6F o
011 0000 48 30 0O 1010000/ 80 | S0 P 11100001121 70 p
0110001 49 | 31 1 101 0001 81 | 51 Q 1110001113 71 g
011 0010 50 | 32 2 1010010/ 82 ' 52 R 1110010 114 72 r
0110011 51 | 33 3 101 0011 83 | 53 | S 111 0011 115 73 s
0110100 52 | 34 4 1010100 84 | 54 T 111 0100|116 | 74 t
0110101 53 | 35 5 1010101 8 | 55 U 1110101117 | 75 u
0110110 54 36 6 1010110 8 |56 V 111 0110|118 76 v
0110111 55|37 | 7 1010111 87 | 57 @ W 111 0111|119 77 w
0111000 56 38 8 101 1000 88 | 58 X 1111000120 78 x
0111001 57 39 9 1011001 89 |50 Y 1111001|121 79 vy
0111010 58 3A 3 1011010 90 |SA Z 1111010 122 | 7A z
0111011 59 | 3B : 101 1011| 91 | 5B 7 [1111011123 7B {
0111100/ 60 3C < 1011100 92 | 5€C \ 1111100 124 7C |
Andrew H. Fa91 0111101 61 3D = 101 1101‘ 93 15D 1] , 111 1101‘ 125 7D }
0111110 62 3E > 101 1110| 94 SE A 1111110126 | 7E @ ~

Time Systen
011 1111) 63 | 3F 2 101 1111/ 95 | 5F

