Sensor Processing
So far, our code looks something like this:

while (1) {
<read some sensors>
<respond to the sensor 1nput>
<read some other sensors>

<respond to the sensor 1nput>

Andrew H. Fagg: Embedded Real- 1
Time Systems: Interrupts

Sensor Processing

e Sometimes, this Is sufficient

e Other times:

— We need to respond to certain events very
quickly, or

— We need to time events very carefully

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupts

« Hardware mechanism that allows some
event to temporarily interrupt an ongoing
task

* The processor then executes a small
piece of code called: interrupt handler or
Interrupt service routine (ISR)

« Execution then continues with the original
program

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Some Sources of Interrupts
(atmega2560)

External:
* An input pin changes state
 The UART receives a byte on a serial input

Internal:
A clock
* Processor reset

* The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Interrupt Example

Suppose we are executing code
from your main program:

LDS R1 (A)<4— PC
LDS R2 (B)
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code
from your main program:

LDS R1 (A)
LDS R2 (B)«— PC
CP R2,R1
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example

Suppose we are executing code

from your main program:
LDS R1 (A)
LDS R2 (B)
CP R2,R1 < PC
BRGE 3
LDS R3 (D)
ADD R3, R1
STS (D), R3

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

An Example
An interrupt occurs (EXT INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, Rl «— PC

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3 auewn. ragy embedded rea-

Time Systems: Interrupts

An Example

Execute the Interrupt handler

LDS R1 (A)
LDS R2 (B)
CP R2, R1

» BRGE 3
DS R3 ('D)\ remember this location

ADD R3, R1
STS (D)1 R3 Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

An Example

Execute the Interrupt handler
EXT INTI1:

LDS R1 (A
@) PC —”LDS R1 (G)

LDS R2 (V
P R2 R LDS R5 (L)

» BRGE 3 Y ADDR1, R2
LDS R3 (D) '
ADD R3. R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 10

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI PC —»LDS R5 (L)
> BRGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 11

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 PC —>ADD R1, R2
LDS R3 (D) :
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 12

Time Systems: Interrupts

An Example

Execute the Interrupt handler

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CP R2, R1 LDS RS (L)
> BRGE 3 . _»ADD.Rl, R2
LDS R3 (D) '
ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 13

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:
LDS R1 (A)

DS R? (B) LDS R1 (G)
CP R2, R1 LDSR5 (L)
> ERGE 3 ADD R1, R2
LDS R3 (D) :
ADD R3, R1 PC—>RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 14

Time Systems: Interrupts

An Example

Return from interrupt

EXT INT1:

LDS R1 (A)

DS R2 (B) LDS R1 (G)

CP R2, R1 LDSR5 (L)
ADD R1, R2

» BRGE 3 «— PC
DS R3 (D)\ :
ADD R3, R1 RETI
STS (D), R3 sewt ragg: Embedded real s

Time Systems: Interrupts

An Example

Continue execution with original

EXT INT1:
LDS R1 (A)

DSR2 (B) LDS R1 (G)
CPR2 RI LDS R5 (L)
SRGE 3 ADD R1, R2
LDS R3 (D) «— pC :

ADD R3, R1 RETI

STS (D)1 R3 Andrew H. Fagg: Embedded Real- 16

Time Systems: Interrupts

An Example

Continue execution with original

EXT INTL:
LDS R1 (A)
DS R2 (B) LDS R1 (G)
CP R2. R1 LDS R5 (L)
BRGE 3 ADD R1, R2
LDS R3 (D) :

RETI

ADD R3, Rle— PC
STS (D)1 R3 Andrew H. Fagg: Embedded Real- 17

Time Systems: Interrupts

Interrupt Service Routines

Generally a very small number of
Instructions

* We want a quick response so the
processor can return to what it was
originally doing

* No delays, waits, or floating point
operations(**) in the ISR...

Andrew H. Fagg: Embedded Real- 18
Time Systems: Interrupts

Timer-Based Interrupts

* Interrupt source: internal hardware timer

* This allows us to produce an interrupt at
some regular period

* The exact mechanism is different
depending on the type of processor you
are using (even if you are using the
Arduino environment)

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

19

Teensy: Timerl

“Timer1” is one predefined variable that can

be configured to handle timer operations.

Key ones include:

e TiImerl.initialize (usec): Initialize
the timer and set its period

e TImerl.attachInterrupt (func):
configure the timer to execute func once
every period

« Timerl.start (): start running the timer

Andrew H. Fagg: Embedded Real- 20
Time Systems: Interrupts

#include <TimerOne.h>

void myISR()

{

GPIOC PDOR "= 0x20;

void setup () {

// Configure PORTC, bit 5 to be a digital I/0 bit

PORTC PCR5 = PORT PCR MUX (0x1) ;
// Configure bit 5 to be an output
GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (200000) ;
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

void loop () {

}

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

Timer Example

What does this program do?

21

Timer Example

e myISR () Is called every 200 ms

« Each call to this function flips the state of
the built-in LED

 So: the LED flashes at 2.5 Hz

* Note that this happens even though loop()
does nothing!

— The ISR executes asynchronously from loop()

Andrew H. Fagg: Embedded Real- 22
Time Systems: Interrupts

void myISR()

{ Timer Example I

static int counter = 0;

++counter;

LE (counter ==) What does this program do?

GPIOC_PDOR “= 0x20;

counter = 0;

void setup () {
PORTC_PCR5 = PORT_PCR_MUX(OXI);

GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (200000) ;
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

void loop() { Andrew H. Fagg: Embedded Real-
} Time Systems: Interrupts

23

Timer Example |

* LED flips state once every fifth call to the
ISR

« So: the flashing frequency is 2.5/5 = 0.5 Hz

Andrew H. Fagg: Embedded Real- 24
Time Systems: Interrupts

Timerl Notes

Timerl is used within the Arduino Environment to
handle analogWrite() for pins 3 and 4 (for the
Teensy 3.5)

* By using the timer, analogWrite() will not longer
function

* |nstead, you can use: Timerl.pwm(pin, duty) to
configure PWM for pins 3 and 4

* And Timerl.setPwmDuty(pin, duty) to change
the duty cycle

 Note duty =[0 ... 1023]

Andrew H. Fagg: Embedded Real- 25
Time Systems: Interrupts

Timerl: Other Functions

« Timerl.stop (): Stop the timer

e Timerl.resume () : continue the timer
e Timerl.restart () : startthe timer at

the beginning of the period

e TImerl.detachInterrupt () :

the ISR

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

turn off

26

Timer3 be
 Arduino

Timer3

naves the same way as Timerl

n0ins 29 & 30 on the Teensy 3.5

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

27

Controlling LED Brightness

What Is the relationship of current flow
through an LED and the rate of photon
emission?

* They are linearly related (essentially)

Andrew H. Fagg: Embedded Real- 28
Time Systems: Interrupts

Controlling LED Brightness

Suppose we pulse an LED for a given period
of time with a digital signal: what is the
relationship between pulse width and
number of photons emitted?

Andrew H. Fagg: Embedded Real- 29
Time Systems: Interrupts

Controlling LED Brightness

Suppose we pulse an LED for a given period of
time with a digital signal: what is the relationship
between pulse width and number of photons
emitted?

« Again: they are linearly related (essentially)

« If the period is short enough, then the human
eye will not be able to detect the flashes

Andrew H. Fagg: Embedded Real- 30
Time Systems: Interrupts

Timer Example llI

* Problem: implement an ISR that generates
a PWM signal

* The duty cycle Is determined by the state
of a global variable (“duty”)

Andrew H. Fagg: Embedded Real- 31
Time Systems: Interrupts

Timer Example llI

volatile uint8 t duty = 0;

void loop () {
for(int 1 = 0; 1 < 255; ++1) {
duty = 1;
delay (10);
}
for(int 1 = 255; 1 > 0; —--1) {
duty = 1;
delay (10);
J What is the ISR implementation?

Andrew H. Fagg: Embedded Real- 32
Time Systems: Interrupts

Timer Example llI

vold setup () {
PORTC_PCR5 = PORT_PCR_MUX (0x1) ;
GPIOC PDDR = 0x20;

// Configure the timer
Timerl.initialize (100);
Timerl.attachInterrupt (myISR) ;

Timerl.start () ;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

33

Timer Example llI

volid myISR()

{

static uint8 t counter =
++counter;
1f (counter < duty)

GPIOC PDOR |= 0x20;
else

GPIOC PDOR &= ~0x20;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

0;

34

Timer Example llI

volid myISR()

{

static uint8 t counter
++counter;
1f (counter < duty)
GPIOC PDOR |= 0x20;
else
GPIOC PDOR &= ~0x20;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

0;

35

PWM Implementation

What Is the resolution (how long Is one
increment of “duration”)?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

37

PWM Implementation

What Is the resolution (how long Is one
increment of “duration”)?

e 100 usecs

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

38

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

39

PWM Implementation

What is the period of the pulse?
100 usecs * 256 = 25.6 ms

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

40

NOTE: DON'T USE THIS SOFTWARE
PWM FOR YOUR PROJECT

 Use hardware PWM Instead

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

41

Interrupt Service Routines

« Should be very short
— No “delays”
— No busy waiting

— Function calls from the ISR should be short
also

— Minimize looping
— No “printf()”

« Communication with the main program
using volatile global variables

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

42

Interrupts, Shared Data
and Compiler Optimizations

« Compilers (including ours) will often
optimize code In order to minimize
execution time

* These optimizations often pose no
problems, but can be problematic in the
face of interrupts and shared data

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

43

Shared Data and Compller
Optimizations

For example:
A=A+ 1;
C =B+ A

Will result in ‘A’ being fetched from memory
once (Iinto a general-purpose register) —
even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

44

Shared Data and Compller
Optimizations

Now consider:

while (1) {
GPIOB PDOR = A;

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

45

Shared Data and Compller
Optimizations
The compiler will assume that ‘A’ never changes.
This will result in assembly code that looks something like this:
Rl = A; // Fetch value of A into register 1

while (1) {
GPIOB PDOR = RI1;

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real- 46
Time Systems: Interrupts

Shared Data and Compller
Optimizations

This optimization is generally fine — but

consider the following interrupt routine:

my ISR () {
A = GPIOC PDIR;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

a7

Shared Data and Compller
Optimizations

This optimization is generally fine — but
consider the following interrupt routine:

myISR () {
A = GPIOC PDIR;
}
* The global variable ‘A’ is being changed!
* The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real- 48
Time Systems: Interrupts

Shared Data and Compller
Optimizations
The fix: the programmer must tell the

compiler that it is not allowed to assume
that a memory location Is not changing

* This i1s accomplished when we declare the
global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real- 49
Time Systems: Interrupts

Shared Data and Compller
Optimizations

volatile uint8_t A,

This will cause the compiler to do this:
while (1) {

R1 = A; // Fetch value of A into reg 1
GPIOC PDOR = R1;

The compiler fetches A from memory every time it needs it!

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

50

Shared Data and Interrupts

 Recall: the data bus on the Atmel
mega2560 Is 8 bits wide

* A byte can be transferred in one cycle

* Any data structure larger than a byte
requires multiple transfers

When there are interrupts: this can lead to
subtle (but very real) problems

Andrew H. Fagg: Embedded Real- 51
Time Systems: Interrupts

For example:
uintlo t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

52

For example:
uintlo t a;
a = a + 5;
Steps:

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 53
Time Systems: Interrupts

Suppose that an ISR routine views and then
modifies the variable a ...

Andrew H. Fagg: Embedded Real- 54
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 55
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

* Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* ISR changes a, but main program still
uses old value

Andrew H. Fagg: Embedded Real- 56
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real- 57
Time Systems: Interrupts

* Transfer of the low byte from memory to a
general purpose register

* Transfer of the high byte

« Addition operation (multiple steps)

» Transfer of the low byte from GP to mem
* Transfer of the high byte from GP to mem

Interrupt occurs:

* The ISR "sees” the new value of the low
byte and the old value of the high byte

Andrew H. Fagg: Embedded Real- 58
Time Systems: Interrupts

Solution?

One possibllity:

* If the main program is working with a, then
It can temporarily disable interrupts while it
does this operation

* Note: it should not disable interrupts for
very long

Andrew H. Fagg: Embedded Real- 59
Time Systems: Interrupts

Turning off Interrupts

volatile uintleo t a;

nolnterrupts () ; // Turn off interrupts
a = a + 5;

interrupts () ; // Turn them back on

Andrew H. Fagg: Embedded Real- 60
Time Systems: Interrupts

Shared Data Problems

* Any time that the main program and the
ISR both view/change a global variable,
the potential exists for these shared data
problems

» Always a problem if the variable is larger
than the width of the data bus (called a
“word”)

« Some single word variables are a problem,

but not all are (it depends on how they are
used)

Andrew H. Fagg: Embedded Real- 61
Time Systems: Interrupts

Turning off Interrupts

 Always turn off for the shortest time
possible

* There are some cases in which interrupts
do not need to be turned off for things to
work properly

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

62

volatile unsigned char TimerFlag=0; BOOk
void TimerISR() { Example

TimerFlag = 1;

What is happening with the ISR?

volid main () |
B = 0; // Init outputs
TimerSet (1000) ;
TimerOn () ;
BL State = BL SMStart;
TL State = TL SMStart;
while (1) {

TickFct BlinkLed(); // Tick the BlinkLed synchSM
TickFct ThreeLeds () ; // Tick the ThreeLeds synchSM
while (!TimerFlag) {} // Wait for timer period
TimerFlag = 0; // Lower flag raised by timer
}
} Andrew H. Fagg: Embedded Real- 63

Time Systems: Interrupts

volatile unsigned char TimerFlag=0; Book

void TimerISR() { Example

TimerFlag = 1;

void ma;“ ()//{ . TimerFlag is set to 1 every 1ms
B = 0; Init Lput .
| nr- PEEPEES o Acts as a gate for the while loop
TimerSet (1000) ;
* The loop executes once per 1ms

TimerOn () ;

BL State = BL SMStart;
TL State = TL SMStart;
while (1) {

TickFct BlinkLed(); // Tick the BlinkLed synchSM
TickFct ThreeLeds () ; // Tick the ThreeLeds synchSM
while (!TimerFlag) {} // Wait for timer period
TimerFlag = 0; // Lower flag raised by timer
}
} Andrew H. Fagg: Embedded Real- 64

Time Systems: Interrupts

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

65

System Safety

Getting embedded code right Is hard
« Complex interaction of many pieces

 \We often have to test in the real-time
context

— Limited ability to “see” the state of our
program

— A bug can only occur in a very specific
situation

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

66

System Safety

In practice, It is very difficult to write a
program that behaves appropriately in all
situations

* In some cases: the program produces
iIncorrect behavior (completely or in part),
but continues to execute

* In other cases: the program might “lock-
up” and cease to execute critical pieces of

code

Andrew H. Fagg: Embedded Real- 67
Time Systems: Interrupts

System Degradation over Time

With use, an embedded system can
degrade due to mechanical or electrical
variation (or interaction with high-energy
particles)

 Electrical connections between
components can be broken

« Components can falil
 Memory can be corrupted

Andrew H. Fagg: Embedded Real- 68
Time Systems: Interrupts

Corruption of Memory

Software rot: small changes are made to the
program at the machine code level

* Introduces subtle bugs that can lead to
Incorrect behavior or processor lock-up

Permanent data storage corruption:

« EEPROM might store parameters that
affect behavior (e.g., Kp & Kv)

» Corruption also leads to incorrect behavior

Andrew H. Fagg: Embedded Real- 69
Time Systems: Interrupts

Reducing Problems

Proper mechanical stabllity

» Appropriate choice of connection between
components (this includes soldering)

o Strain relief of wires

* Housings for electronics (in some cases,
these will reduce the sensitivity to
vibrations)

Andrew H. Fagg: Embedded Real- 70
Time Systems: Interrupts

Reducing Problems

Proper electrical stability

* Some component require power supplies
to be very clean (very little variation in
supplied voltage)

« Some components (e.g. motors) can
cause a lot of noise on the power supply

* Electrical isolation Is often necessary

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

71

Mitigation In the Long Term

Program and data corruption:

* Processors need some way to restore
their state to a “factory configuration”

* Most often: a human maintainer will need
to “reflash” the memories stored in
EEPROM

* But: some systems can autonomously
detect when corruption occurs and take
steps to correct the corrupted memory

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

72

Mitigation In the Short Term

Mission critical systems: build in redundancies
« Multiple copies of a sensor or actuator

« Multiple processors, all performing the same
functions (in some cases, the processors are
executing different implementations of the same

code)

— Subsystems are responsible for comparing the results
across the different copies and choosing which to
believe

— Errors can be detected very quickly, and the

embedded system can take appropriate corrective

measures Andrew H. Fagg: Embedded Real- 73
Time Systems: Interrupts

Mitigation In the Very Short Term

Detecting system lock-ups: watchdog timers

* In most embedded systems, we expect
certain tasks to be executed at certain

rates

* A bug in the code can result in a full stop
of the program or in an infinite loop for a
condition that Is never met

Andrew H. Fagg: Embedded Real- 74
Time Systems: Interrupts

Watch-Dog Timers

Hardware component:

A short term counter attached to the
system clock

« Compare the counter against some fixed
threshold, raising an interrupt when they
are equal

Andrew H. Fagg: Embedded Real- 75
Time Systems: Interrupts

Watch-Dog Timers

Software component:

* Main program: “feed the dog” periodically
oy the resetting the counter

* Interrupt service routine: cause a full or
partial system reset
— ISR can use knowledge of the system to

attempt a recovery or identify where an error
OCCUrs

Andrew H. Fagg: Embedded Real- 76
Time Systems: Interrupts

Watchdogs in Practice

Initialization:
* Register ISR

extern void 1sr function();

wdt 1sr(i1sr function);

« Declare watchdog timeout period
wdt enable (WDTO 25);

Note: Exact implementation will depend on the
processor

Andrew H. Fagg: Embedded Real- 77
Time Systems: Interrupts

Watchdogs in Practice

Use:
* Always execute:
wdt reset();
within the watchdog period

* ISR function:
— Clean up after the error
— Store data for later reporting of the error

Andrew H. Fagg: Embedded Real-
Time Systems: Interrupts

78

Unstable Power Supplies

An unstable power supply can throw a
processor Into a strange, inconsistent state

At this point, the results from executing
iIndividual instructions can be very
uncertain

* Would like the processor to protect itself in
these situations

Andrew H. Fagg: Embedded Real- 79
Time Systems: Interrupts

Unstable Power Supplies

A common solution: Brown-Out Detection
circuitry

« At minimum, will force a clean reset of the
processor before the power supply voltage
drops below a critical level

* In some architectures, the processor can
be configured to raise an interrupt
following a brown-out

Andrew H. Fagg: Embedded Real- 80
Time Systems: Interrupts

