
Microprocessors

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

1

Review: Components of a

Microprocessor
What are they?

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

3

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

4

Components of a Microprocessor

• Memory:

– Storage of data

– Storage of a program

– Either can be temporary or “permanent”
storage

• Registers: small, fast memories

– General purpose: temporarily store arbitrary
data

– Special purpose: used to control the
processor

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

5

Components of a Microprocessor

• Instruction decoder:

– Translates current program instruction into a

set of control signals

• Arithmetic logical unit:

– Performs both arithmetic and logical

operations on data: add, subtract, multiply,

AND, OR …

• Input/output control modules

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

6

Components of a Microprocessor

• Many of these components must

exchange data with one-another

• It is common to use a ‘bus’ for this

exchange

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

7

Buses

• In the simplest form, a bus is a single wire

• Many different components can be

attached to the bus

• Any component can take input from the

bus or place information on the bus

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

8

Buses

• At most one component may write to the

bus at any one time

• In a microprocessor, which component is

allowed to write is usually determined by

the code that is currently executing

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

9

Atmel Mega2560 Architecture

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

10

Atmel Mega2560

8-bit data bus

• Primary

mechanism

for data

exchange

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

12

32 general
purpose
registers

• 8 bits wide

• 3 pairs of
registers can
be combined
to give us 16
bit registers

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

13

Special

purpose

registers

• Control of the

internals of

the

processor

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

14

Random Access

Memory (RAM)

• 8 KByte in size

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

15

Random Access
Memory (RAM)

• 8 KByte in size

Note: in high-end
processors,
RAM is a
separate
component

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

16

Flash (EEPROM)

• Program

storage

• 256 KByte in

size

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

17

Flash (EEPROM)

• In this and many
microcontrollers,
program and
data storage is
separate

• Not the case in
our general
purpose
computers

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

18

EEPROM

• Permanent

data storage

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

19

Arithmetic
Logical Unit

• Data inputs
from registers

• Control inputs
not shown
(derived from
instruction
decoder)

Atmel Mega2560

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

21

Machine-Level Programs

Machine-level programs are stored as

sequences of atomic machine instructions

• Stored in program memory

• Execution is generally sequential

(instructions are executed in order)

• But – with occasional “jumps” to other

locations in memory

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

22

Types of Instructions

• Memory operations: transfer data values

between memory and the internal registers

• Mathematical operations: ADD,

SUBTRACT, MULT, AND, etc.

• Tests: value == 0, value > 0, etc.

• Program flow: jump to a new location,

jump conditionally (e.g., if the last test was

true)

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

23

Program

counter

• Address of

currently

executing

instruction

Mega2560: Decoding Instructions

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

24

Instruction

register

• Stores the

machine-level

instruction

currently being

executed

Mega2560: Decoding Instructions

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

25

Instruction

decoder

• Translates

current

instruction into

control signals

for the rest of

the processor

Atmel Mega2560

Atmel Instructions

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

26

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

27

Some Mega2560 Memory Operations

LDS Rd, k

• Load SRAM memory location k into
register Rd

• Rd <- (k)

STS Rd, k

• Store value of Rd into SRAM location k

• (k) <- Rd

We refer to this as

“Assembly Language”

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

28

Load SRAM Value to Register

LDS Rd, k

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

29

Store Register Value to SRAM

STS Rd, k

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

30

Some Mega2560 Arithmetic and

Logical Instructions

ADD Rd, Rr

• Add Rd and Rr (these are registers)

• Operation: Rd <- Rd + Rr

ADC Rd, Rr

• Add with carry

• Rd <- Rd + Rr + C

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

31

Add Two Register Values

ADD Rd, Rr

• Fetch register

values

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

32

Add Two Register Values

ADD Rd, Rr

• Fetch register

values

• ALU performs

ADD

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

33

Add Two Register Values

ADD Rd, Rr

• Fetch register

values

• ALU performs

ADD

• Result is

written back to

register via the

data bus

Andrew H. Fagg: Embedded Real-

Time Systems: Microcontrollers

34

Some Mega2560 Arithmetic and

Logical Instructions

NEG Rd: take the two’s complement of Rd

AND Rd, Rr: bit-wise AND with a register

ANDI Rd, K: bit-wise AND with a constant

EOR Rd, Rr: bit-wise XOR

INC Rd: increment Rd

MUL Rd, Rr: multiply Rd and Rr (unsigned)

MULS Rd, Rr: multiply (signed)

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

38

Connecting Assembly Language to C

• Our C compiler is responsible for

translating our code into Assembly

Language

• Today, we rarely program in Assembly

Language

– Embedded systems are a common exception

– Also: it is useful in some cases to view the

assembly code generated by the compiler

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

39

An Example

A C code snippet:

if(B < A) {

D += A;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

40

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

41

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Load the contents of memory

location A into register 1

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

42

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Load the contents of memory

location B into register 2

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

43

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Compare the contents of register

2 with those of register 1

This results in a change to the

status register

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

44

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Branch If Greater Than or Equal To:

jump ahead 3 instructions if true

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

45

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Branch if greater than or equal to

will jump ahead 3 instructions if

true

if true

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

46

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Not true: execute the next

instruction

if not true
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

47

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Load the contents of memory

location D into register 3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

48

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Add the values in

registers 1 and 3 and

store the result in

register 3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

49

An Example

A C code snippet:

if(B < A) {

D += A;

}

The Assembly :

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

……..

Store the value in register

3 back to memory

location D PC

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

50

Take-Aways
Instructions are the “atomic” actions that are taken

by the processor

• Many different component work together to

execute a single instruction

• One line of C code typically translates into a

sequence of several instructions

• In the Teensy, most instructions are executed in

a single clock cycle

The high-level view is important here: you won’t be

compiling programs on exams

An Example
#include "oulib.h"

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

while(1) {

delay_ms(++a);

};

}
Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

51

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

52

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

53

Location in program

memory

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

54

Load memory

location 0x200 to r24

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

55

Add 5 to r24

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

56

Store r24 to memory

location 0x200

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

57

Load memory

location 0x200 to r24

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

58

Add 1 to r24

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

59

Store r24 to memory

location 0x200

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

60

Load memory

location 0x200 to

r25, r24

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

61

Call delay_ms()

Compiled Result
0000013c <main>:

volatile uint8_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 8b 5f subi r24, 0xFB ; 251

142: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

146: 80 91 00 02 lds r24, 0x0200

14a: 8f 5f subi r24, 0xFF ; 255

14c: 80 93 00 02 sts 0x0200, r24

150: 80 91 00 02 lds r24, 0x0200

154: 90 e0 ldi r25, 0x00 ; 0

156: 0e 94 ae 00 call 0x15c ; 0x15c <delay_ms>

15a: f5 cf rjmp .-22 ; 0x146 <main+0xa>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

62

Go back to top of

while() loop

Example II
#include "oulib.h"

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

while(1) {

delay_ms(++a);

};

}
Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

63

Example II
#include "oulib.h"

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

while(1) {

delay_ms(++a);

};

}
Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

64

Size of

integer has

changed!

We need

two bytes

Compiled Result
0000013c <main>:

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ; 5

146: 90 93 01 02 sts 0x0201, r25

14a: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

14e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ; 1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: 0e 94 b7 00 call 0x16e ; 0x16e <delay_ms>

16c: f0 cf rjmp .-32 ; 0x14e <main+0x12>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

65

Compiled Result
0000013c <main>:

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ; 5

146: 90 93 01 02 sts 0x0201, r25

14a: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

14e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ; 1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: 0e 94 b7 00 call 0x16e ; 0x16e <delay_ms>

16c: f0 cf rjmp .-32 ; 0x14e <main+0x12>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

66

Load memory locations

0x201, 0x200

to r25, r24

Compiled Result
0000013c <main>:

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ; 5

146: 90 93 01 02 sts 0x0201, r25

14a: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

14e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ; 1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: 0e 94 b7 00 call 0x16e ; 0x16e <delay_ms>

16c: f0 cf rjmp .-32 ; 0x14e <main+0x12>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

67

Add 5 to r25, r24

Compiled Result
0000013c <main>:

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ; 5

146: 90 93 01 02 sts 0x0201, r25

14a: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

14e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ; 1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: 0e 94 b7 00 call 0x16e ; 0x16e <delay_ms>

16c: f0 cf rjmp .-32 ; 0x14e <main+0x12>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

68

Store r25, r24 to

memory locations

0x201, 0x200

Compiled Result
0000013c <main>:

volatile uint16_t a = 10;

int main (void)

{

a = a+5;

13c: 80 91 00 02 lds r24, 0x0200

140: 90 91 01 02 lds r25, 0x0201

144: 05 96 adiw r24, 0x05 ; 5

146: 90 93 01 02 sts 0x0201, r25

14a: 80 93 00 02 sts 0x0200, r24

while(1) {

delay_ms(++a);

14e: 80 91 00 02 lds r24, 0x0200

152: 90 91 01 02 lds r25, 0x0201

156: 01 96 adiw r24, 0x01 ; 1

158: 90 93 01 02 sts 0x0201, r25

15c: 80 93 00 02 sts 0x0200, r24

160: 80 91 00 02 lds r24, 0x0200

164: 90 91 01 02 lds r25, 0x0201

168: 0e 94 b7 00 call 0x16e ; 0x16e <delay_ms>

16c: f0 cf rjmp .-32 ; 0x14e <main+0x12>

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

69

Store r25, r24 to

memory locations

0x201, 0x200

We have doubled

the number of

memory

operations!

Take-Home Message I

We want to carefully choose our data types

• Smaller variables are handled more

efficiently

• But: we need to make sure that the results

of the math that we do with these variables

fits in the size that we have chosen

– Intermediate values must fit, too!

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

70

Take-Home Message II

• A line a C code usually translates into a

sequence of atomic instructions

• Most instructions are executed in one

cycle of the system clock

• For a given instruction, many different

components work together to make that

instruction happen

– Program counter, instruction register and

decoder, general and special purpose

registers, memory, ALU, etc.
Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

71

Take-Home Message III

• You should know what these different

components are and what they do at an

abstract level

• You don’t need to know the details of the

assembly language or how these details

relate to specific lines of C code

Andrew H. Fagg: Embedded Real-

Time Systems: Microprocessors

72

