


Project 1 Lessons



Project 1 Lessons

Functions can be abstractions

* Hide details from their “callers”

* |n our case: we are hiding the details of manipulating
bits

* But: must only manipulate the relevant bits. Otherwise,
the function could interfere with the activities of other

functions



Project 1 Lessons

* Documentation Is important
* Three levels: file/project, function and in-line
« Each has their own purpose

* Integrate code review feedback: your code will be used
In subsequent projects (and points will be subtracted for
persistent errors)



Loop() and Control

void loop() {

int val,

for(val = 0; val < 255; ++val) {
display value(val);
delay(100);




Loop() and Control
void loop() {
Int val;
for(val = 0; val < 255; ++val) {
display value(val);
delay(100);

}

Nested loop design can be problematic...

* The Arduino environment performs other tasks outside of
loop(). These can be time-critical.

* Therefore: we want to execute loop() and get out as quickly
as possible



Loop() and Control
void loop() {
Int val,
for(val = O; val < 255; ++val) {
display value(val);
delay(100);

}

* As implemented, val is only a temporary variable: it
disappears after we leave the loop() function

* How do we repair this?



One Solution: Global Variables

Int val = O;

void loop() {
++val,
if(val > 255)
val = 0;
display value(val);
delay(100);
}



Alternative (and Cleaner) Solution:
Static Variables

void loop() {
static int val = O

++val;
If(val > 255)

val = 0;
display value(val);
delay(100);

}



Alternative (and Cleaner) Solution:
| Static Variables
void loop() {

static int val = O;

++val;
If(val > 255)
val = 0;
display value(val);
delay(100);
}
}

* val Is now persistent across calls to loop()

 The Initialization of val only happens at the beginning of your
program



Andrew H. Fagg: Embedded Real-Time Systems: Project 2



Project 2: Analog Sensor
Processing



Project 2: Analog Sensor Processing

« Each group has two Sharp distance sensors

« Connect to your circuit board & then to the Teensy

» Code: read the raw sensor state

 Collect data and analyze

* Model your sensors

* Write a function that returns calibrated distance values



Component 1: Circuit

Connect each sensor to circuit board:

* Power: +5V power: Vin on the Teensy)
* Ground

 Signal: analog input pin on the Teensy




Component 2: Test Function

Loop():
 Read the raw sensor values
* Print out the sensor values



Using the USB Serial Port

* In this context, serial refers to the exchange of character-
based information

» Setup():
Serial.begin (9600);

* Loop():
Serial.println (“Foo”);
Serial.print (42);

* Viewing the output:
» Use the serial monitor (upper right corner of the Arduino window)



Reading from an Analog Port

 Define the analog pin at the top of your INO file:

const int analogPin = 1;
* The “1" corresponds to analog input A1

* Read from the pin:
int val = analogRead (analogPin);

The use of the constant Is not strictly required, but it
makes for much more readable code



Component 3.
Data Collection and Analysis

» Take at least 5 samples each for: 5, 6, 8, 10, 14, 20, 30,
40, 60, 80 cm.

* Two plots for each sensor:
« Sensor value as a function of distance (cm)
« Sensor value as a function of 1/distance (1/cm)



Component 4. Sensor Model

Fit a simple function to your data
* 5-6¢cm should be captured well

» Adjust the other parameters of your function to capture
the rest of your data as best as possible



Component 5: Implement the Model

» Define a new variable type in "project.h":
typedef enum {
DISTANCE LEFT = 0,
DISTANCE RIGHT = 1
} DistanceSensor;

* Implement the function:

float read distance (DistanceSensor side)
* Return value in cm



Component 6: Test

» Take at least 5 samples each for: 5, 6, 8, 10, 14, 20, 30,
40, 60, 80 cm.

* Plot sensed distance value as a function of true
distance (one curve for each sensor)



Hints

 The sensors can interfere with one-another
« Start this project early
» Keep things simple



