
Project 9:
Finite State Machines I

Project 9: “Your Mission”
Produce the following behavior:

• Wait for the switch to be pressed.

• Record the current orientation as your goal.

• After a 5-second delay, ramp up the middle fan to a point
where the craft begins to turn (as measured by the gyro).

• (optional) Slightly drop the middle fan thrust.

• Move forward until a wall is detected to the front.

• Stop

• Make a 90 degree turn to the left

• Move forward until another wall is detected to the front.

• Stop
Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Implementation
We are using a Finite State Machine to implement this
entire sequence

• Use a FSM diagram to plan your machine

Code:

• New task: fsm_task (with fsm_step())

• Use an enumerated data type State to capture the
different possible states

• Define behavior for each state:
• What are the events, actions and transitions?

• Implement and test incrementally
Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Finite State Machine Implementation

fsm_step() {

static State state = STATE_START; // Initial state

switch(state) {

case STATE_0:

<handle state 0>

break;

case STATE_1:

<handle state 1>

break;

case STATE_2: …

}

}
Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Finite State Machine Implementation

• All sensing and low-level control will be addressed by other
tasks

• Communication between tasks through global variables:
• Sensors include: IMU, distance, velocity_smoothed, theta_error

• “Actuators” include: theta_goal, velocity_goal

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

Notes

• Implement and test the FSM incrementally

• You can test your code while holding onto the craft
• Person holding simulates the sequence of movements

• We have a partial field set up now; a full set of walls will
be installed soon

• Surface: we are trying something new today and
tomorrow

Andrew H. Fagg: Embedded Real-Time Systems: Project 9

