
Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

1

Control of Time-Varying Behavior

Can often express a “mission” in terms of a

sequence of sub-tasks (or a plan)

• But: we also want to handle contingencies

when they arrive

Finite state machines are a simple way of

expressing such plans and contingencies

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

2

Finite State Machines (FSMs)

Pure FSM is composed of:

• A set of states

• A set of possible inputs (or events)

• A set of possible outputs (or actions)

• A transition function:

– Given the current state and an input: defines

the output and the next state

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

3

Finite State Machines (FSMs)

States:

• Represent all possible “situations” that

must be distinguished

• At any given time, the system is in exactly

one of the states

• There is a finite number of these states

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

4

Finite State Machines (FSMs)

An example: a 3-bit counter that increments

when “count” input is received

• States: ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

5

Finite State Machines (FSMs)

An example: a counter

• States: the different combinations of the

digits: 000, 001, 010, … 111

• Inputs: ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

6

Finite State Machines (FSMs)

An example: a counter

• Inputs (events):

– Only one: “count”

– We will call this “C”

• Outputs: ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

7

Finite State Machines (FSMs)

An example: a counter

• Outputs: same as the set of states

• Transition function: ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

8

Finite State Machines (FSMs)

An example: a counter

• Transition function:

– On the count event, transition to the next

highest value

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

9

FSM Example:

Synchronous Counter

A Graphical Representation:

000

001
010

011

100

101
110

111

A set of states

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

10

FSM Example:

Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

11

FSM Example:

Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The event

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

12

FSM Example:

Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

13

FSM Example:

Synchronous Counter

A transition

000

001
010

011

100

101
110

111

C/001

The output: The

Zyante book calls

these “Mealy Actions”

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

14

FSM Example:

Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010

C/001

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

15

FSM Example:

Synchronous Counter

The next transition

000

001
010

011

100

101
110

111

C/010 C/011

C/001

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

16

FSM Example:

Synchronous Counter

The full transition set

000

001
010

011

100

101
110

111

C/010 C/011

C/100

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

17

FSM Example:

Synchronous Counter

Initial condition

000

001
010

011

100

101
110

111

C/010 C/011
x/000

C/101

C/110C/111

C/000

C/001

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

18

Example II: An Up/Down Counter

Suppose we have two events (instead of

one): Count up and count down

• How does this change our state transition

diagram?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

19

Example II: An Up/Down Counter

From state 000, there are now two possible

transitions

000

001
010

011

100

101
110

111

U/001

D/111

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

20

Example II: An Up/Down Counter

Likewise for state 001…

000

001
010

011

100

101
110

111

U/001

D/000

D/111

U/010

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

21

Example II: An Up/Down Counter

The full transition set

000

001
010

011

100

101
110

111

U/010 U/011

U/100

U/101

U/110U/111

U/000

U/001

D/000

D/001 D/010

D/011

D/100

D/101
D/110

D/111

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

22

FSMs and Control

How do we relate FSMs to Control?

• States are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

23

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

24

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are some processed representation

of what the sensors are observing

• Outputs are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

25

FSMs and Control
How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs are some processed representation
of what the sensors are observing

• Outputs are the control actions

– These are typically “high level” actions: e.g.,
set the goal orientation to 125 degrees

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

26

FSMs: A Control Example

Suppose we have a vending machine:

• Accepts dimes and nickels

• Will dispense one of two things once $.20

has been entered: Jolt or Buzz Water

– The “user” requests one of these by pressing

a button

• Ignores select if < $.20 has been entered

• Immediately returns any coins above $.20

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

27

Vending Machine FSM

What are the states?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

28

Vending Machine FSM

What are the states?

• $0

• $.05

• $.10

• $.15

• $.20

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

29

Vending Machine FSM

What are the inputs/events?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

30

Vending Machine FSM

What are the inputs/events?

• Input nickel (N)

• Input dime (D)

• Select Jolt (J)

• Select Buzz Water (BW)

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

31

Vending Machine FSM

What are the outputs?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

32

Vending Machine FSM

What are the outputs?

• Return nickel (RN)

• Return dime (RD)

• Dispense Jolt (DJ)

• Dispense Buzz Water (DBW)

• Nothing (Z)

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

33

Vending Machine Design

What is the initial state?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

34

Vending Machine Design

What is the initial state?

• S = $0

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

35

Vending Machine Design

What can happen from

S = $0?

Event Next

State

Output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

36

Vending Machine Design

What can happen from

S = $0?

What does this part of

the diagram look like?

Event Next

State

Output

N $.05 Z

D $.10 Z

J $0 Z

BW $0 Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

37

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

38

Vending Machine Design

What can happen from

S = $0.05?

Event Next

State

Output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

39

Vending Machine Design

What can happen from

S = $0.05?

What does the modified

diagram look like?

Event Next

State

Output

N $.10 Z

D $.15 Z

J $.05 Z

BW $.05 Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

40

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

41

Vending Machine Design

What can happen from

S = $0.10?

Event Next

State

Output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

42

Vending Machine Design

What can happen from

S = $0.10?

Event Next

State

Output

N $.15 Z

D $.20 Z

J $.10 Z

BW $.10 Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

43

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

44

Vending Machine Design

What can happen from

S = $0.15?

Event Next

State

Output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

45

Vending Machine Design

What can happen from

S = $0.15?

Event Next

State

Output

N $.20 Z

D $.20 RN

J $.15 Z

BW $.15 Z

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

46

Vending Machine Design

A piece of the state diagram:

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

J/Z

BW/Z

N/Z

D/RN

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

47

Vending Machine Design

Finally: what can

happen from S =

$0.20?

Event Next

State

Output

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

48

Vending Machine Design

Finally, what can

happen from S =

$0.20?

Event Next

State

Output

N $.20 RN

D $.20 RD

J $0 DJ

BW $0 DBW

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

49

Vending Machine Design

The complete state diagram:

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

J/Z

BW/Z

N/Z

D/RN N/RN

D/RD

J / DJ

BW / DBW

• End for day…

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

50

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

51

Finite State Machines

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

J/Z

BW/Z

N/Z

D/RN N/RN

D/RD

J / DJ

BW / DBW

FSMs III

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

52

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

53

Control of Time-Varying Behavior

Can often express a “mission” in terms of a

sequence of sub-tasks (it is a plan!)

• But: we also want to handle contingencies

when they arrive

Finite state machines are a simple way of

expressing such plans and contingencies

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

54

Vending Machine FSM

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

J/Z

BW/Z

N/Z

D/RN N/RN

D/RD

J / DJ

BW / DBW

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

55

Finite State Machines (FSMs)

Pure FSM form is composed of:

• A set of states

• A set of possible inputs (or events)

• A set of possible outputs (or actions)

• A transition function:

– Given the current state and an input: defines

the output and the next state

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

56

FSMs and Control

How do we relate FSMs to Control?

• States are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

57

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs/events are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

58

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs/events are some processed

representation of what the sensors are

observing

• Outputs are ?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

59

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs/events are some processed

representation of what the sensors are

observing

• Outputs are the control actions

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

60

FSMs and Control
How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs/events are some processed
representation of what the sensors are
observing

• Outputs are the control actions

– These are typically “high level” actions: e.g.,
set the goal orientation to 125 degrees

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

61

A Robot Control Example

Consider the following task:

• The robot is to move toward the first

beacon that it “sees”

• The robot searches for a beacon in the

following order: right, left, front

• Once beacon is found, move toward it and

stop once the beacon is reached

What is the FSM representation?

Robot Description

Mobile robot with sensor turret on top

• Mobile robot turns take time

• Turret turns are relative to the mobile base

and do not take time

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

62

Events

• Robot Turn Complete (TC)

• Beacon (B)

• No Beacon (NB)

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

63

Actions
• Look left (LL): turn turret to be facing left

(relative to the mobile base)

• Look right (LR)

• Look forward (LF)

• Turn left (TL): initiate a turn of the robot

base by 90 degrees to the left

• Turn right (TR): initiate right turn

• Move forward (F): initiate forward

movement

• Stop (S) Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

64

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

65

Robot Control Example II
Consider the following task:

• The robot must lift off to some altitude

• Translate to some location

• Take pictures

• Return to base

• Land

• At any time: a detected failure should cause the
craft to land

What is the FSM representation?

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

66

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

67

Vending Machine FSM

$0

$.05
N/Z

x/Z

$.10

D/ZJ/Z

BW/Z

$.15
D/Z

N/Z

J/Z

BW/Z

$.20

J/Z

BW/Z

N/Z

D/Z

J/Z

BW/Z

N/Z

D/RN N/RN

D/RD

J / DJ

BW / DBW

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

68

FSMs and Control

How do we relate FSMs to Control?

• States are our memory of recent inputs

• Inputs/events are some processed

representation of what the sensors are

observing

• Outputs are the control actions

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

69

FSMs in C

fsm_step() {

static State state = STATE_0; // Initial state

<do some processing of the sensory inputs>

switch(state) {

case STATE_0:

<handle state 0>

break;

case STATE_1:

<handle state 1>

break;

case STATE_2: …

}

}

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

70

FSMs in C (some other

possibilities)
fsm_step() {

static State state = STATE_0; // Initial state

<do some processing of the sensory inputs>

switch(state) {

case STATE_0:

<handle state 0>

break;

case STATE_1:

<handle state 1>

break;

case STATE_2: …

}

<do some low-level control>

}

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

71

Handling Each State

• You will need to provide code that handles

the event processing for each state

• Specifically:

– You need to handle each event that can occur

– For each event, you must specify:

• What action is to be taken

• What the next state is

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

72

Handling Each State

In our vending machine example:

• Events are easy to describe (only a few

things can happen)

• It is convenient in this case to also “switch”

on the event

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

73

FSMs in C: Processing for

Individual States
case STATE_10cents:

// $.10 has already been deposited

switch(event) {

case EVENT_NICKEL: // Nickel

state = STATE_15cents; // Transition to $.15

break;

case EVENT_DIME: // Dime

state = STATE_20cents; // Transition to $.2

break;

case EVENT_JOLT: // Select Jolt

case EVENT_BUZZ: // Select Buzzwater

display_NOT_ENOUGH();

break;

case EVENT_NONE: // No event

break; // Do nothing

};

break;

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

74

Handling Each State

Some events do not fall neatly into one of

several categories

• This precludes the use of the “switch”

construct for events

• For example: an event that occurs when

our hovercraft reaches a goal orientation

• For these continuous situations, we

typically use an “if” construct …

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

75

FSMs in C: Processing for

Individual States
:

:

case STATE_MISSION_PHASE_3:

if(heading_error < 10.0 &&

heading_error > -10.0)

{

// Accelerate forward!

desired_velocity = {.2, 0};

state = STATE_MISSION_PHASE_4;

};

break;

:

:

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

76

FSMs in C: Processing for

Individual States
:

case STATE_MISSION_PHASE_4:

if(distance_left < 20.0 ||

distance_right < 20.0)

{

// Brake!

desired_velocity = {0, 0};

counter = 0; // Reset the clock

state = STATE_MISSION_PHASE_5;

};

break;

:

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

77

FSMs in C: Processing for

Individual States:

case STATE_MISSION_PHASE_5:

if(counter > 20)

{

// Assuming dt=50ms, one second has

// gone by since we

// started the brake

heading_goal = heading_goal - 90.0;

if(heading_goal <= -180.0) heading_goal += 360;

state = STATE_MISSION_PHASE_6;

};

break;

:

REMEMBER: counter is being incremented once per control
cycle (outside of the FSM code)

FSM Implementation Notes

• FSM code should not contain delays or

waits

– No delay_ms() or while(…){}

– Remember that your FSM code will be called

once per control cycle: use “if” to check for an

event during that control cycle

• Use LEDs and/or fprintf() to indicate

current state

• Implement and test incrementally
Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

78

FSM Implementation Notes

For your project: you will use an enumerated

data type to represent your set of states.

• Allows us to be very clear what the

possible values are

• Affords type checking by the compiler

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

79

Mission-Level Control

• In this example (and in your project), the

job of the FSM is to worry about

sequencing the high-level steps in a task

• We leave the details of sensing and action

to other tasks

• Communication between the tasks is

through variables declared in global

memory

Andrew H. Fagg: Embedded Real-

Time Systems: FSMs

80

