
Sensor Processing
So far, our code looks something like this:

loop()

{

<read some sensors>

<respond to the sensor input>

<read some other sensors>

<respond to the sensor input>

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

1

Sensor Processing

• Sometimes, this is sufficient

• Other times:

– We need to respond to certain events very

quickly, or

– We need to time events very carefully

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

2

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

3

Interrupts

• Hardware mechanism that allows some

event to temporarily interrupt an ongoing

task

• The processor then executes a small

piece of code called: interrupt handler or

interrupt service routine (ISR)

• Execution then continues with the original

program

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

4

Some Sources of Interrupts

(atmega2560)

External:

• An input pin changes state

• The UART receives a byte on a serial input

Internal:

• A clock

• Processor reset

• The on-board analog-to-digital converter
completes its conversion

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

5

Interrupt Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

6

An Example

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

7

An Example

PC

Suppose we are executing code

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

8

An Example

An interrupt occurs (EXT_INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

9

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

remember this location

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

10

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

11

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

12

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

13

An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

14

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

15

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

16

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

17

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

18

Interrupt Service Routines

Generally a very small number of

instructions

• We want a quick response so the

processor can return to what it was

originally doing

• No delays, waits, or floating point

operations(**) in the ISR…

Timer-Based Interrupts

• Interrupt source: internal hardware timer

• This allows us to produce an interrupt at

some regular period

• The exact mechanism is different

depending on the type of processor you

are using (even if you are using the

Arduino environment)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

19

Teensy: Timer1

“Timer1” is one predefined variable that can

be configured to handle timer operations.

Key ones include:

• Timer1.initialize(usec): initialize

the timer and set its period

• Timer1.attachInterrupt(func):

configure the timer to execute func once

every period

• Timer1.start(): start running the timer
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

20

Timer Example
#include <TimerOne.h>

void myISR()

{

GPIOC_PDOR ^= 0x20;

}

void setup() {

// Configure PORTC, bit 5 to be a digital I/O bit

PORTC_PCR5 = PORT_PCR_MUX(0x1);

// Configure bit 5 to be an output

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

21

What does this program do?

Timer Example

• myISR() is called every 200 ms

• Each call to this function flips the state of

the built-in LED

• So: the LED flashes at 2.5 Hz

• Note that this happens even though loop()

does nothing!

– The ISR executes asynchronously from loop()

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

22

Timer Example II
void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter == 5) {

GPIOC_PDOR ^= 0x20;

counter = 0;

}

}

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

23

What does this program do?

Timer Example II

• LED flips state once every fifth call to the

ISR

• So: the flashing frequency is 2.5/5 = 0.5 Hz

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

24

Timer1 Notes

Timer1 is used within the Arduino Environment to

handle analogWrite() for pins 3 and 4 (for the

Teensy 3.5)

• By using the timer, analogWrite() will not longer

function

• Instead, you can use: Timer1.pwm(pin, duty) to

configure PWM for pins 3 and 4

• And Timer1.setPwmDuty(pin, duty) to change

the duty cycle

• Note duty = [0 … 1023]
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

25

Timer1: Other Functions

• Timer1.stop(): stop the timer

• Timer1.resume(): continue the timer

• Timer1.restart(): start the timer at

the beginning of the period

• Timer1.detachInterrupt(): turn off

the ISR

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

26

Timer3

Timer3 behaves the same way as Timer1

• Arduino pins 29 & 30 on the Teensy 3.5

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

27

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

28

Controlling LED Brightness

What is the relationship of current flow

through an LED and the rate of photon

emission?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

29

Controlling LED Brightness

What is the relationship of current flow

through an LED and the rate of photon

emission?

• They are linearly related (essentially)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

30

Controlling LED Brightness

Suppose we pulse an LED for a given period

of time with a digital signal: what is the

relationship between pulse width and

number of photons emitted?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

31

Controlling LED Brightness

Suppose we pulse an LED for a given period of

time with a digital signal: what is the relationship

between pulse width and number of photons

emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human

eye will not be able to detect the flashes

Timer Example III

• Problem: implement an ISR that generates

a PWM signal

• The duty cycle is determined by the state

of a global variable (“duty”)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

32

Timer Example III

volatile uint8_t duty = 0;

void loop() {

for(int i = 0; i < 255; ++i) {

duty = i;

delay(10);

}

for(int i = 255; i > 0; --i) {

duty = i;

delay(10);

}

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

33

What is the ISR implementation?

Timer Example III

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(100);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

34

Timer Example III
void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter == 0)

PORTC_PDOR |= 0x20;

if(counter >= duty)

PORTC_PDOR &= ~0x20;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

35

Timer Example III

void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter < duty)

GPIOC_PDOR |= 0x20;

else

GPIOC_PDOR &= ~0x20;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

36

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

37

PWM Implementation

What is the resolution (how long is one

increment of “duration”)?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

38

PWM Implementation

What is the resolution (how long is one

increment of “duration”)?

• 100 usecs

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

39

PWM Implementation

What is the period of the pulse?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

40

PWM Implementation

What is the period of the pulse?

• 100 usecs * 256 = 25.6 ms

NOTE: DON’T USE THIS SOFTWARE

PWM FOR YOUR PROJECT

• Use hardware PWM instead (what you

have already been doing)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

42

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

43

Interrupt Service Routines

• Should be very short

– No “delays”

– No busy waiting

– Function calls from the ISR should be short
also

– Minimize looping

– No “printf()”

• Communication with the main program
using volatile global variables

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

44

Interrupts, Shared Data

and Compiler Optimizations

• Compilers (including ours) will often

optimize code in order to minimize

execution time

• These optimizations often pose no

problems, but can be problematic in the

face of interrupts and shared data

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

45

Shared Data and Compiler

Optimizations

For example:

A = A + 1;

C = B + A

Will result in ‘A’ being fetched from memory

once (into a general-purpose register) –

even though ‘A’ is used twice

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

46

Shared Data and Compiler

Optimizations

Now consider:

while(1) {

GPIOB_PDOR = A;

}

What does the compiler do with this?

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

47

Shared Data and Compiler

Optimizations
The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:

R1 = A; // Fetch value of A into register 1

while(1) {

GPIOB_PDOR = R1;

}

The compiler only fetches A from memory once!

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

48

Shared Data and Compiler

Optimizations

This optimization is generally fine – but

consider the following interrupt routine:

myISR(){

A = GPIOC_PDIR;

}

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

49

Shared Data and Compiler

Optimizations

This optimization is generally fine – but

consider the following interrupt routine:

myISR(){

A = GPIOC_PDIR;

}

• The global variable ‘A’ is being changed!

• The compiler has no way to anticipate this

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

50

Shared Data and Compiler

Optimizations

The fix: the programmer must tell the

compiler that it is not allowed to assume

that a memory location is not changing

• This is accomplished when we declare the

global variable:

volatile uint8_t A;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

51

Shared Data and Compiler

Optimizations
volatile uint8_t A;

This will cause the compiler to do this:

while(1) {

R1 = A; // Fetch value of A into reg 1

GPIOC_PDOR = R1;

}

The compiler fetches A from memory every time it needs it!

Shared Data and Interrupts

• Recall: the data bus on the Atmel

mega2560 is 8 bits wide

• A byte can be transferred in one cycle

• Any data structure larger than a byte

requires multiple transfers

When there are interrupts: this can lead to

subtle (but very real) problems

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

52

For example:

uint16_t a;

a = a + 5;

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

53

For example:

uint16_t a;

a = a + 5;

Steps:

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

54

Suppose that an ISR routine views and then

modifies the variable a …

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

55

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

56

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• ISR changes a, but main program still

uses old value

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

57

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

58

• Transfer of the low byte from memory to a

general purpose register

• Transfer of the high byte

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• The ISR “sees” the new value of the low

byte and the old value of the high byte

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

59

Solution?

One possibility:

• If the main program is working with a, then

it can temporarily disable interrupts while it

does this operation

• Note: it should not disable interrupts for

very long

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

60

Turning off Interrupts

volatile uint16_t a;

:

:

noInterrupts(); // Turn off interrupts

a = a + 5;

interrupts(); // Turn them back on

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

61

Shared Data Problems
• Any time that the main program and the

ISR both view/change a global variable,

the potential exists for these shared data

problems

• Always a problem if the variable is larger

than the width of the data bus (called a

“word”)

• Some single word variables are a problem,

but not all are (it depends on how they are

used)
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

62

Turning off Interrupts

• Always turn off for the shortest time

possible

• There are some cases in which interrupts

do not need to be turned off for things to

work properly

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

63

Another ISR Example…

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

64

Book

Example

volatile unsigned char TimerFlag=0;

void TimerISR() {

TimerFlag = 1;

}

void main() {

B = 0; // Init outputs

TimerSet(1000);

TimerOn();

BL_State = BL_SMStart;

TL_State = TL_SMStart;

while (1) {

TickFct_BlinkLed(); // Tick the BlinkLed synchSM

TickFct_ThreeLeds(); // Tick the ThreeLeds synchSM

while (!TimerFlag){} // Wait for timer period

TimerFlag = 0; // Lower flag raised by timer

}

} Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

65

What is happening with the ISR?

Book

Example

volatile unsigned char TimerFlag=0;

void TimerISR() {

TimerFlag = 1;

}

void main() {

B = 0; // Init outputs

TimerSet(1000);

TimerOn();

BL_State = BL_SMStart;

TL_State = TL_SMStart;

while (1) {

TickFct_BlinkLed(); // Tick the BlinkLed synchSM

TickFct_ThreeLeds(); // Tick the ThreeLeds synchSM

while (!TimerFlag){} // Wait for timer period

TimerFlag = 0; // Lower flag raised by timer

}

} Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

66

• TimerFlag is set to 1 every 1ms

• Acts as a gate for the while loop

• The loop executes once per 1ms

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

67

Many Challenges to Building

Robust Systems

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

68

Coding Challenges

Getting embedded code right is hard

• Complex interaction of many pieces

• We often have to test in the real-time

context

– Limited ability to “see” the state of our

program

– A bug can only occur in a very specific

situation that only comes up rarely

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

69

Coding Challenges

In practice, it is very difficult to write a

program that behaves appropriately in all

situations

• In some cases: the program produces

incorrect behavior (completely or in part),

but continues to execute

• In other cases: the program might “lock-

up” and cease to execute critical pieces of

code
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

70

System Degradation over Time

With use, an embedded system can

degrade due to mechanical or electrical

variation (or interaction with high-energy

particles)

• Electrical connections between

components can be broken

• Components can fail (especially silicon)

• Memory can be corrupted

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

71

Corruption of Memory

Software rot: small changes are made to the

program at the machine code level

• Introduces subtle bugs that can lead to

incorrect behavior or processor lock-up

Permanent data storage corruption:

• EEPROM might store parameters that

affect behavior (e.g., Kp & Kv)

• Corruption also leads to incorrect behavior
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

72

Reducing Problems

Proper mechanical stability

• Appropriate choice of connection between

components (this includes soldering)

• Strain relief of wires

• Housings for electronics (in some cases,

these will reduce the sensitivity to

vibrations)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

73

Reducing Problems

Proper electrical stability

• Some components require power supplies

to be very clean (very little variation in

supplied voltage)

• Some components (e.g. motors) can

cause a lot of noise on the power supply

• Electrical isolation is often necessary

– We do this on the hovercrafts!

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

74

Mitigation in the Long Term

Program and data corruption:

• Processors need some way to restore

their state to a “factory configuration”

• Most often: a human maintainer will need

to “reflash” the memories stored in

EEPROM

• But: some systems can autonomously

detect when corruption occurs and take

steps to correct the corrupted memory
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

75

Mitigation in the Short Term

Mission critical systems: build in redundancies

• Multiple copies of a sensor or actuator

• Multiple processors, all performing the same

functions (in some cases, the processors are

executing different implementations of the same

code)

– Subsystems are responsible for comparing the results

across the different copies and choosing which to

believe

– Errors can be detected very quickly, and the

embedded system can take appropriate corrective

measures Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

76

Mitigation in the Very Short Term

System lock-ups

• In most embedded systems, we expect

certain tasks to be executed at certain

rates

• A bug in the code can result in a full stop

of the program or in an infinite loop for a

condition that is never met

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

77

Watch-Dog Timers

Hardware component:

• A short term counter attached to the

system clock

• Compare the counter against some fixed

threshold, raising an interrupt when they

are equal

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

78

Watch-Dog Timers

Software component:

• Main program: “feed the dog” periodically

by the resetting the counter

• Interrupt service routine: cause a full or

partial system reset

– ISR can use knowledge of the system to

attempt a recovery or identify where an error

occurs

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

79

Watchdogs in the Teensies
Initialization:

• Register ISR

extern void isr_function();

:

wdt_isr(isr_function);

• Declare watchdog timeout period

wdt_enable(WDT0_2S);

Note: Exact implementation will depend on the

processor
Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

80

Watchdogs in Practice

Use:

• Always execute:

wdt_reset();

within the watchdog period

• ISR function can:

– Clean up after the error

– Store data for later reporting of the error

– Reboot the processor

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

81

Unstable Power Supplies

An unstable power supply can throw a

processor into a strange, inconsistent state

• At this point, the results from executing

individual instructions can be very

uncertain

• Would like the processor to protect itself in

these situations

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

82

Mitigating Unstable Power

Supplies
A common solution: Brown-Out Detection

circuitry

• At minimum, will force a clean reset of the

processor before the power supply voltage

drops below a critical level

• In some architectures, the processor can

be configured to raise an interrupt

following a brown-out

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

83

