
Sensor Processing
So far, our code looks something like this:

loop()

{

<read some sensors>

<respond to the sensor input>

<read some other sensors>

<respond to the sensor input>

}
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Sensor Processing

• Sometimes, this is sufficient

• Other times:

– We need to respond to certain events very 

quickly, or

– We need to time events very carefully
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Interrupts

• Hardware mechanism that allows some 

event to temporarily interrupt an ongoing 

task

• The processor then executes a small 

piece of code called: interrupt handler or 

interrupt service routine (ISR)

• Execution then continues with the original 

program
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Some Sources of Interrupts

(atmega2560)

External:

• An input pin changes state

• The UART receives a byte on a serial input

Internal:

• A clock

• Processor reset

• The on-board analog-to-digital converter 
completes its conversion
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Interrupt Example

Suppose we are executing code 

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC
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An Example

Suppose we are executing code 

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

Suppose we are executing code 

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3
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An Example

PC

Suppose we are executing code 

from your main program:

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3
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An Example

An interrupt occurs (EXT_INT1):

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC
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An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

remember this location
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An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
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An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
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An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
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An Example

Execute the interrupt handler

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
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An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

PC

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI



Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

15

An Example

Return from interrupt

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI

PC



Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

16

An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC
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An Example

Continue execution with original

LDS R1 (A)

LDS R2 (B)

CP R2, R1

BRGE 3

LDS R3 (D)

ADD R3, R1

STS (D), R3

EXT_INT1:

LDS R1 (G)

LDS R5 (L)

ADD R1, R2

:

RETI
PC
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Interrupt Service Routines

Generally a very small number of 

instructions

• We want a quick response so the 

processor can return to what it was 

originally doing

• No delays, waits, or floating point 

operations(**) in the ISR…



Timer-Based Interrupts

• Interrupt source: internal hardware timer

• This allows us to produce an interrupt at 

some regular period

• The exact mechanism is different 

depending on the type of processor you 

are using (even if you are using the 

Arduino environment)
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Teensy: Timer1

“Timer1” is one predefined variable that can 

be configured to handle timer operations.  

Key ones include:

• Timer1.initialize(usec): initialize 

the timer and set its period

• Timer1.attachInterrupt(func): 

configure the timer to execute func once 

every period

• Timer1.start(): start running the timer
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Timer Example
#include <TimerOne.h>

void myISR()

{

GPIOC_PDOR ^= 0x20;  

}

void setup() {

// Configure PORTC, bit 5 to be a digital I/O bit

PORTC_PCR5 = PORT_PCR_MUX(0x1);

// Configure bit 5 to be an output

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
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Timer Example

• myISR() is called every 200 ms

• Each call to this function flips the state of 

the built-in LED

• So: the LED flashes at 2.5 Hz

• Note that this happens even though loop() 

does nothing!

– The ISR executes asynchronously from loop()
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Timer Example II
void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter == 5) {

GPIOC_PDOR ^= 0x20;

counter = 0;  

}

}

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(200000);

Timer1.attachInterrupt(myISR);

Timer1.start();

}

void loop() {

}
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Timer Example II

• LED flips state once every fifth call to the 

ISR

• So: the flashing frequency is 2.5/5 = 0.5 Hz

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

24



Timer1 Notes

Timer1 is used within the Arduino Environment to 

handle analogWrite() for pins 3 and 4 (for the 

Teensy 3.5)

• By using the timer, analogWrite() will not longer 

function

• Instead, you can use: Timer1.pwm(pin, duty) to 

configure PWM for pins 3 and 4

• And Timer1.setPwmDuty(pin, duty) to change 

the duty cycle

• Note duty = [0 … 1023]
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Timer1: Other Functions

• Timer1.stop(): stop the timer 

• Timer1.resume(): continue the timer

• Timer1.restart(): start the timer at 

the beginning of the period

• Timer1.detachInterrupt(): turn off 

the ISR
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Timer3

Timer3 behaves the same way as Timer1

• Arduino pins 29 & 30 on the Teensy 3.5
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Controlling LED Brightness

What is the relationship of current flow 

through an LED and the rate of photon 

emission?
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Controlling LED Brightness

What is the relationship of current flow 

through an LED and the rate of photon 

emission?

• They are linearly related (essentially)
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Controlling LED Brightness

Suppose we pulse an LED for a given period 

of time with a digital signal: what is the 

relationship between pulse width and 

number of photons emitted?
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Controlling LED Brightness

Suppose we pulse an LED for a given period of 

time with a digital signal: what is the relationship 

between pulse width and number of photons 

emitted?

• Again: they are linearly related (essentially)

• If the period is short enough, then the human 

eye will not be able to detect the flashes



Timer Example III

• Problem: implement an ISR that generates 

a PWM signal

• The duty cycle is determined by the state 

of a global variable (“duty”)
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Timer Example III

volatile uint8_t duty = 0;

void loop() {

for(int i = 0; i < 255; ++i) {

duty = i;

delay(10);

}

for(int i = 255; i > 0; --i) {

duty = i;

delay(10);

}

}
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Timer Example III

void setup() {

PORTC_PCR5 = PORT_PCR_MUX(0x1);

GPIOC_PDDR = 0x20;

// Configure the timer

Timer1.initialize(100);

Timer1.attachInterrupt(myISR);

Timer1.start();

}
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Timer Example III
void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter == 0)

PORTC_PDOR |= 0x20;

if(counter >= duty)

PORTC_PDOR &= ~0x20;

}
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Timer Example III

void myISR()

{

static uint8_t counter = 0;

++counter;

if(counter < duty) 

GPIOC_PDOR |= 0x20;

else

GPIOC_PDOR &= ~0x20;

}
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PWM Implementation

What is the resolution (how long is one 

increment of “duration”)?
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PWM Implementation

What is the resolution (how long is one 

increment of “duration”)?

• 100 usecs
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PWM Implementation

What is the period of the pulse?
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PWM Implementation

What is the period of the pulse?

• 100 usecs * 256 = 25.6 ms



NOTE: DON’T USE THIS SOFTWARE 

PWM FOR YOUR PROJECT

• Use hardware PWM instead (what you 

have already been doing)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

42



Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

43

Interrupt Service Routines

• Should be very short

– No “delays”

– No busy waiting

– Function calls from the ISR should be short 
also

– Minimize looping

– No “printf()”

• Communication with the main program 
using volatile global variables 
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Interrupts, Shared Data 

and Compiler Optimizations

• Compilers (including ours) will often 

optimize code in order to minimize 

execution time

• These optimizations often pose no 

problems, but can be problematic in the 

face of interrupts and shared data
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Shared Data and Compiler 

Optimizations

For example:

A = A + 1;

C = B + A

Will result in ‘A’ being fetched from memory 

once (into a general-purpose register) –

even though ‘A’ is used twice
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Shared Data and Compiler 

Optimizations

Now consider:

while(1) {

GPIOB_PDOR = A;

}

What does the compiler do with this?
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Shared Data and Compiler 

Optimizations
The compiler will assume that ‘A’ never changes.

This will result in assembly code that looks something like this:

R1 = A;  // Fetch value of A into register 1

while(1) {

GPIOB_PDOR = R1;

}

The compiler only fetches A from memory once!
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Shared Data and Compiler 

Optimizations

This optimization is generally fine – but 

consider the following interrupt routine:

myISR(){

A = GPIOC_PDIR;

}
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Shared Data and Compiler 

Optimizations

This optimization is generally fine – but 

consider the following interrupt routine:

myISR(){

A = GPIOC_PDIR;

}

• The global variable ‘A’ is being changed!

• The compiler has no way to anticipate this
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Shared Data and Compiler 

Optimizations

The fix: the programmer must tell the 

compiler that it is not allowed to assume 

that a memory location is not changing

• This is accomplished when we declare the 

global variable:

volatile uint8_t A;
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Shared Data and Compiler 

Optimizations
volatile uint8_t A;

This will cause the compiler to do this:

while(1) {

R1 = A;  // Fetch value of A into reg 1

GPIOC_PDOR = R1;

}

The compiler fetches A from memory every time it needs it!



Shared Data and Interrupts

• Recall: the data bus on the Atmel 

mega2560 is 8 bits wide

• A byte can be transferred in one cycle

• Any data structure larger than a byte 

requires multiple transfers

When there are interrupts: this can lead to 

subtle (but very real) problems
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For example:

uint16_t a;

a = a + 5;
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For example:

uint16_t a;

a = a + 5;

Steps:

• Transfer of the low byte from memory to a 

general purpose register

• Transfer of the high byte 

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem
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Suppose that an ISR routine views and then 

modifies the variable a …
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• Transfer of the low byte from memory to a 

general purpose register

• Transfer of the high byte 

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem
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• Transfer of the low byte from memory to a 

general purpose register

• Transfer of the high byte 

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• ISR changes a, but main program still 

uses old value
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• Transfer of the low byte from memory to a 

general purpose register

• Transfer of the high byte 

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem
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• Transfer of the low byte from memory to a 

general purpose register

• Transfer of the high byte 

• Addition operation (multiple steps)

• Transfer of the low byte from GP to mem

• Transfer of the high byte from GP to mem

Interrupt occurs:

• The ISR “sees” the new value of the low 

byte and the old value of the high byte
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Solution?

One possibility: 

• If the main program is working with a, then 

it can temporarily disable interrupts while it 

does this operation

• Note: it should not disable interrupts for 

very long
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Turning off Interrupts

volatile uint16_t a;

:

:

noInterrupts(); // Turn off interrupts

a = a + 5;

interrupts(); // Turn them back on
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Shared Data Problems
• Any time that the main program and the 

ISR both view/change a global variable, 

the potential exists for these shared data 

problems

• Always a problem if the variable is larger 

than the width of the data bus (called a 

“word”)

• Some single word variables are a problem, 

but not all are (it depends on how they are 

used)
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Turning off Interrupts

• Always turn off for the shortest time 

possible

• There are some cases in which interrupts 

do not need to be turned off for things to 

work properly
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Another ISR Example…
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Book 

Example

volatile unsigned char TimerFlag=0;

void TimerISR() {

TimerFlag = 1;

}

void main() {

B = 0; // Init outputs

TimerSet(1000);

TimerOn(); 

BL_State = BL_SMStart;

TL_State = TL_SMStart; 

while (1) {          

TickFct_BlinkLed();    // Tick the BlinkLed synchSM

TickFct_ThreeLeds();   // Tick the ThreeLeds synchSM

while (!TimerFlag){}   // Wait for timer period

TimerFlag = 0;         // Lower flag raised by timer

}

} Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

65

What is happening with the ISR?



Book 

Example

volatile unsigned char TimerFlag=0;

void TimerISR() {

TimerFlag = 1;

}

void main() {

B = 0; // Init outputs

TimerSet(1000);

TimerOn(); 

BL_State = BL_SMStart;

TL_State = TL_SMStart; 

while (1) {          

TickFct_BlinkLed();    // Tick the BlinkLed synchSM

TickFct_ThreeLeds();   // Tick the ThreeLeds synchSM

while (!TimerFlag){}   // Wait for timer period

TimerFlag = 0;         // Lower flag raised by timer

}

} Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts
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• TimerFlag is set to 1 every 1ms

• Acts as a gate for the while loop

• The loop executes once per 1ms
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Many Challenges to Building 

Robust Systems
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Coding Challenges

Getting embedded code right is hard

• Complex interaction of many pieces

• We often have to test in the real-time 

context

– Limited ability to “see” the state of our 

program

– A bug can only occur in a very specific 

situation that only comes up rarely
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Coding Challenges

In practice, it is very difficult to write a 

program that behaves appropriately in all 

situations

• In some cases: the program produces 

incorrect behavior (completely or in part), 

but continues to execute

• In other cases: the program might “lock-

up” and cease to execute critical pieces of 

code
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System Degradation over Time

With use, an embedded system can 

degrade due to mechanical or electrical 

variation (or interaction with high-energy 

particles)

• Electrical connections between 

components can be broken

• Components can fail (especially silicon)

• Memory can be corrupted
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Corruption of Memory

Software rot: small changes are made to the 

program at the machine code level

• Introduces subtle bugs that can lead to 

incorrect behavior or processor lock-up

Permanent data storage corruption:

• EEPROM might store parameters that 

affect behavior (e.g., Kp & Kv)

• Corruption also leads to incorrect behavior
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Reducing Problems

Proper mechanical stability

• Appropriate choice of connection between 

components (this includes soldering)

• Strain relief of wires

• Housings for electronics (in some cases, 

these will reduce the sensitivity to 

vibrations)

Andrew H. Fagg: Embedded Real-

Time Systems: Interrupts

73



Reducing Problems

Proper electrical stability

• Some components require power supplies 

to be very clean (very little variation in 

supplied voltage)

• Some components (e.g. motors) can 

cause a lot of noise on the power supply

• Electrical isolation is often necessary

– We do this on the hovercrafts!
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Mitigation in the Long Term

Program and data corruption:

• Processors need some way to restore 

their state to a “factory configuration”

• Most often: a human maintainer will need 

to “reflash” the memories stored in 

EEPROM

• But: some systems can autonomously 

detect when corruption occurs and take 

steps to correct the corrupted memory
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Mitigation in the Short Term

Mission critical systems: build in redundancies

• Multiple copies of a sensor or actuator

• Multiple processors, all performing the same 

functions (in some cases, the processors are 

executing different implementations of the same 

code)

– Subsystems are responsible for comparing the results 

across the different copies and choosing which to 

believe

– Errors can be detected very quickly, and the 

embedded system can take appropriate corrective 
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Mitigation in the Very Short Term

System lock-ups

• In most embedded systems, we expect 

certain tasks to be executed at certain 

rates

• A bug in the code can result in a full stop 

of the program or in an infinite loop for a 

condition that is never met 
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Watch-Dog Timers

Hardware component:

• A short term counter attached to the 

system clock

• Compare the counter against some fixed 

threshold, raising an interrupt when they 

are equal
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Watch-Dog Timers

Software component:

• Main program: “feed the dog” periodically 

by the resetting the counter

• Interrupt service routine: cause a full or 

partial system reset

– ISR can use knowledge of the system to 

attempt a recovery or identify where an error 

occurs
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Watchdogs in the Teensies
Initialization:

• Register ISR

extern void isr_function();

:

wdt_isr(isr_function);

• Declare watchdog timeout period

wdt_enable(WDT0_2S);

Note: Exact implementation will depend on the 

processor
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Watchdogs in Practice

Use:

• Always execute:

wdt_reset();

within the watchdog period

• ISR function can:

– Clean up after the error

– Store data for later reporting of the error

– Reboot the processor
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Unstable Power Supplies

An unstable power supply can throw a 

processor into a strange, inconsistent state

• At this point, the results from executing 

individual instructions can be very 

uncertain

• Would like the processor to protect itself in 

these situations
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Mitigating Unstable Power 

Supplies
A common solution: Brown-Out Detection 

circuitry

• At minimum, will force a clean reset of the 

processor before the power supply voltage 

drops below a critical level

• In some architectures, the processor can 

be configured to raise an interrupt 

following a brown-out
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